• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Modular

Inequação Modular

Mensagempor Rafael16 » Qui Mar 08, 2012 20:24

Boa noite galera!

Resolvi a seguinte inequação, mas a resposta está errada de acordo com meu livro:

\left|\frac{x - 1}{x - 2} \right| < 3

1ª inequação

\frac{x - 1}{x - 2}  < 3

\frac{x - 1}{x - 2} - 3 < 0

Resolvendo isso, ficou assim:

\frac{-2x + 5}{x - 2} < 0

Depois disso, tirei a raiz do numerador e do denominador para ver quais valores de x satisfaz essa inequação.


Agora resolvendo:

2ª inequação

\frac{x - 1}{x - 2} > -3

\frac{x - 1}{x - 2} + 3 > 0

dando:

\frac{4x - 7}{x - 2} > 0

Depois disso, tirei a raiz do numerador e do denominador para ver quais valores de x satisfaz essa inequação.

Depois de ter tirado as raízes das duas inequações, joguei na reta a 1ª inequação para saber os valores de x para que a inequação seja menor que 0, e fazendo o mesmo para a 2ª inequação, só que dessa vez para achar os valores de x para que seja maior que 0.
E em seguida, coloquei as retas das duas inequações paralelas para fazer a intersecção para achar os valores de x para satisfazer as duas inequações.
E minha resposta foi:
S = {x ? ?| x < \frac{7}{4} ou x > \frac{5}{2}

A resposta do meu livro é:
S = {x ? ?| x < \frac{7}{4} ou x > 2}

Valeu gente!
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Inequação Modular

Mensagempor LuizAquino » Qui Mar 08, 2012 21:12

Rafael16 escreveu:Resolvi a seguinte inequação, mas a resposta está errada de acordo com meu livro:

\left|\frac{x - 1}{x - 2} \right| < 3


Rafael16 escreveu:1ª inequação

\frac{x - 1}{x - 2} < 3

\frac{x - 1}{x - 2} - 3 < 0

Resolvendo isso, ficou assim:

\frac{-2x + 5}{x - 2} < 0


A inequação será essa apenas quando \frac{x - 1}{x - 2} \geq 0 (o que significa que \left|\frac{x - 1}{x - 2} \right| = \frac{x - 1}{x - 2} ). Desse modo, você tem um sistema de inequações:

\begin{cases}
\dfrac{x - 1}{x - 2} \geq 0 \\
\\
\dfrac{-2x + 5}{x - 2} < 0
\end{cases}

Resolvendo esse sistema, você obtém a solução S_1 .

Rafael16 escreveu:Agora resolvendo:

2ª inequação

\frac{x - 1}{x - 2} > -3

\frac{x - 1}{x - 2} + 3 > 0

dando:
\frac{4x - 7}{x - 2} > 0


A inequação será essa apenas quando \frac{x - 1}{x - 2} < 0 (o que significa que \left|\frac{x - 1}{x - 2} \right| = -\frac{x - 1}{x - 2} ). Desse modo, você tem um sistema de inequações:

\begin{cases}
\dfrac{x - 1}{x - 2} < 0 \\
\\
\dfrac{4x - 7}{x - 2} > 0
\end{cases}

Resolvendo esse sistema, você obtém a solução S_2 .

Dessa forma, a solução final da inequação original será S = S_1 \cup S_2 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Inequação Modular

Mensagempor Rafael16 » Qui Mar 08, 2012 21:21

Obrigado LuizAquino :-D
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}