por Richard Oliveira » Qua Nov 09, 2011 20:30
Olá, não estou conseguindo resolver essa questão, já vi muitos exemplos de questões do tipo mas esta eu não estou sabendo começar. Acredito que seja fácil, mas eu não consegui mesmo. Segue:
Dada a função f e g de R em R, sendo

e

, então

é:
-
Richard Oliveira
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Nov 04, 2011 16:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Qua Nov 09, 2011 21:11
Se

, temos que

. Calculando f no ponto

, teremos

.
Outra forma de fazer,
que vale apenas neste caso, é

, logo

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Richard Oliveira » Qua Nov 09, 2011 21:50
Você colocou

pra poder cortar com o 4 e o -5? Desculpa mas, como você fez pra descobrir que tinha que usar essa fração?
-
Richard Oliveira
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Nov 04, 2011 16:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Qua Nov 09, 2011 21:54
Sim, foi para cancelar os termos. Basicamente, eu tinha que encontrar um número k tal que

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Richard Oliveira » Qua Nov 09, 2011 22:52
Ah sim, entendi. Eu só estava meio perdido em umas propriedades básicas.

Está certo essa parte?
-
Richard Oliveira
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Nov 04, 2011 16:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Qua Nov 09, 2011 22:59
Está, é que você fez passo a passo e eu pulei a maioria utilizando o fato que

, logo

e

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Richard Oliveira » Qua Nov 09, 2011 23:17
Ah sim, não sou muito prático ainda, mas de tanto ver respostas bem curtas aqui estou aprendendo. Então era isso que eu precisava pra entender. Agradeço pela paciência, me desculpe pelo incomodo, foi tudo foi muito bem explicado, obrigado.
-
Richard Oliveira
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Nov 04, 2011 16:07
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Não sei nem por onde começar
por Daniel Bertuol » Ter Set 06, 2011 14:03
- 1 Respostas
- 1468 Exibições
- Última mensagem por Neperiano

Ter Set 06, 2011 14:47
Matemática Financeira
-
- Não sei nem por onde começar essa.....
por cidaiesbik » Seg Mai 04, 2009 12:51
- 2 Respostas
- 2562 Exibições
- Última mensagem por cidaiesbik

Seg Mai 04, 2009 18:22
Desafios Difíceis
-
- Dúvida não sei por onde começar...
por csmoreira » Seg Mar 04, 2013 20:46
- 0 Respostas
- 2262 Exibições
- Última mensagem por csmoreira

Seg Mar 04, 2013 20:46
Álgebra Linear
-
- [Função de primeiro grau] Nem sei por onde começar '-'
por Cosma » Qui Abr 11, 2013 20:54
- 4 Respostas
- 2216 Exibições
- Última mensagem por Russman

Sáb Abr 13, 2013 14:50
Funções
-
- Não sei por onde começar, mais quero entender (Vetores)
por Linda Arantes » Sex Set 10, 2010 14:52
- 1 Respostas
- 3038 Exibições
- Última mensagem por MarceloFantini

Sex Set 10, 2010 17:57
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.