• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função!

Função!

Mensagempor zekinha » Qui Jun 30, 2011 16:24

Sendo A = (2;3;4) e B = (5;6;7;9;12), qual o conjunto Im da função de A \rightarrow B tal que
f = {{(x;y)}} \in A x B  |  y =3x?

Tipo, eu tentei resolver e cheguei a essa conclusão,

y = 3x é a formula para que o conjunto B, seja multiplicado por 3e o conjunto Im seja feito correto?
No gabarito diz o contrario! Não entendi.
zekinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Jun 27, 2011 00:27
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Fundamental
Andamento: cursando

Re: Função!

Mensagempor zekinha » Qui Jun 30, 2011 20:16

=(
zekinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Jun 27, 2011 00:27
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Fundamental
Andamento: cursando

Re: Função!

Mensagempor MarceloFantini » Qui Jun 30, 2011 20:20

Zekinha, vamos primeiro entender o que é uma função.

Uma função de um conjunto A em um conjunto B é uma regra que associa pontos do conjunto A em pontos do conjunto B. Esse é um ponto muito importante:

A função DEVE ser possível de ser computada em TODOS os pontos de A.

O conjunto imagem gerado é um subconjunto de pontos de B com a propriedade de que eles são resultado da função aplicada em pontos de A. Detalhe importante: a função deve ser possível de ser computada em todos os pontos A, mas não necessariamente ela deve ter como imagem todos os pontos de B.

Simbolicamente:

f = \{ (x,y) \in A \times B \, | \, y=3x \}

A regra que associa A em B diz que a função leva x em três vezes seu valor. Logo, o conjunto imagem da função será os pontos de B que são o triplo de A.

Uma última esclarecida: esta notação (x,y) \in A \times B significa que você pegou um par de elementos x e y onde x \in A e y \in B.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função!

Mensagempor zekinha » Qui Jun 30, 2011 20:38

Marcelo, o que você quis dizer com "COMPUTADA" ? não entendi está expressão.

E no caso a formula y = 3x, significa que, ela só será aplicada no subconjunto de "B" ? que pode ser chamado de relação correto?
Quando o exercício pede "Qual o conjunto Im da função de A \rightarrow B tal que F = (x;y) \in A x B| y =3x" Ele está pedindo
que eu use a formula, mas onde?

OBS: Está expressão A \rightarrow B? ... Significa intercessão de A EM B?


Abraço.
zekinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Jun 27, 2011 00:27
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: Fundamental
Andamento: cursando

Re: Função!

Mensagempor GABRUEL » Qui Jun 30, 2011 20:50

Zekinha o exercício pediu pra vc juntar o A com o B
vai ficar assim AB = {2,3,4,5,6,7,9,12} é isso.
falou.
GABRUEL
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Jun 17, 2011 15:32
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: 8ª série
Andamento: cursando

Re: Função!

Mensagempor MarceloFantini » Qui Jun 30, 2011 22:13

A simbologia f: \, A \to B quer dizer que a função está definida em A e quando aplicamos a regra os resultados são elementos de B. Computar uma função quer dizer calculá-la. O que você pensa ser aplicada no conjunto B? A forma de pensar é a seguinte: você vai pegar os elementos de A e aplicar a regra, ou seja, vai encontrar quanto é a função aplicada em cada elemento. O conjunto formado por esses elementos resultantes é o que chamamos de conjunto imagem da função, que é um subconjunto de B, ou seja, são pontos de B também.

Quando ele diz y=3x, você tem que perceber que y é um elemento de B e x é um elemento de A. Você já tem os valores de x, que são os elementos de A, e você quer descobrir quais são os correspondentes em B, ou seja, aplique a regra e você encontrará os elementos.

Um último comentário novamente em relação à simbologia f: \, A \to B: uma forma de interpretar é que a função f leva elementos de A em elementos de B. Essa interpretação é a que deve guardar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D