• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Descontinuidade num ponto do dominio

Descontinuidade num ponto do dominio

Mensagempor joaofonseca » Sex Mai 20, 2011 07:04

Seja uma função racional, \frac{p(x)}{q(x)}. Sabemos que existe uma assintota vertical (x=a) em que a é o número real que anula o denominador.
Sabemos que uma função para ser continua é necessário:

f(a)=\lim_{x \to a}f(x)

É então sensato concluir que qualquer assintota vertical constituí um ponto de descontinuidade no dominio de f(x)?

Obrigado
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Descontinuidade num ponto do dominio

Mensagempor LuizAquino » Sex Mai 20, 2011 10:38

joaofonseca escreveu:É então sensato concluir que qualquer assintota vertical constituí um ponto de descontinuidade no domínio de f(x)?

Se a reta x = c é uma assíntota vertical da função f(x), então por definição temos que pelo menos um dos limites abaixo é verdadeiro:
(i) \lim_{x\to c} f(x) = \infty

(ii) \lim_{x\to c^-} f(x) = \infty

(iii) \lim_{x\to c^+} f(x) = \infty

Em qualquer uma dessas situações, teremos que a função é descontínua em x = c.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.