por ericaa » Sáb Mar 05, 2011 15:43
Olá Boa Tarde! Estou tentando de várias formas resolver esse seguinte problema q não estou conseguindo, eu tenho muita duvida com a matematica, me ajudem por favor!!!
Pedro e Paulo têm certo número de laranjas. Se Paulo desse a Pedro 12 laranjas, cada um teria o mesmo numero. Pelo contrário, se Pedro desse os 3/5 das suas a Paulo o numero de laranjas de Paulo seria aumentado de seus 3/8. Qual o total de laranjas?
tentei fazer da seguinte forma:
nº de laranja - x
laranja dada à pedro: 12 laranjas
// dada à paulo: 3/5
???? Daí não consegui fazer mas nada, ou seja, não consegui nem montar o problema!
-
ericaa
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Mar 05, 2011 15:13
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Abelardo » Qui Abr 14, 2011 22:52
Tens o gabarito? Eu encontrei 40 laranjas para Pedro e 64 para Paulo. Se estiver certo fiz o seguinte -->
Pedro tem x laranjas
Paulo tem y laranjas
1ª Situação ->
Se Paulo desse a Pedro 12 laranjas, cada um teria o mesmo número, logo fiquei com a seguinte expressão

2ª Situação ->
Se Pedro desse os 3/5 das suas a Paulo o número de laranjas de Paulo seria aumentado seria aumentado de seus 3/8, montei a seguinte expressão

Eliminando o y e substituindo no lugar de x o valor encontrado na primeira situação, terei que Paulo tem 64 laranjas e Pedro tem 40.
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida com problema...
por mhsr » Sex Jan 15, 2010 18:39
- 2 Respostas
- 1682 Exibições
- Última mensagem por Molina

Sáb Jan 16, 2010 09:04
Estatística
-
- Dúvida problema
por RJ1572 » Sex Mai 21, 2010 11:21
- 2 Respostas
- 3327 Exibições
- Última mensagem por MarceloFantini

Sex Mai 21, 2010 22:12
Progressões
-
- Duvida Problema
por RJ1572 » Seg Mai 24, 2010 11:26
- 0 Respostas
- 721 Exibições
- Última mensagem por RJ1572

Seg Mai 24, 2010 11:26
Progressões
-
- Dúvida Problema.
por RJ1572 » Seg Jun 07, 2010 13:28
- 1 Respostas
- 1003 Exibições
- Última mensagem por Douglasm

Seg Jun 07, 2010 15:23
Progressões
-
- Dúvida em problema
por LuizCarlos » Sáb Mai 26, 2012 18:28
- 3 Respostas
- 1719 Exibições
- Última mensagem por DanielFerreira

Qui Mai 31, 2012 22:38
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.