por Aliocha Karamazov » Ter Abr 12, 2011 18:22
Resolva, em

, a inequação:

Não estou conseguindo chegar na respostar, provavelmente porque eu cortei (x+1). Gostaria de uma ajuda nesse exercício e de um auxílio, de maneira geral, para resolver questões desse tipo.
Obrigado a todos que puderem ajudar!
-
Aliocha Karamazov
- Usuário Parceiro

-
- Mensagens: 90
- Registrado em: Qua Mar 16, 2011 17:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Física
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequação do segundo grau
por Aliocha Karamazov » Ter Abr 05, 2011 21:42
- 4 Respostas
- 4507 Exibições
- Última mensagem por Aliocha Karamazov

Qua Abr 06, 2011 18:51
Funções
-
- Exercício de inequação de segundo grau
por Lola » Qua Mai 08, 2013 14:40
- 1 Respostas
- 1534 Exibições
- Última mensagem por young_jedi

Sex Mai 10, 2013 22:35
Inequações
-
- Função do segundo grau
por gustavoluiss » Dom Nov 28, 2010 17:27
- 7 Respostas
- 5241 Exibições
- Última mensagem por alexandre32100

Qua Dez 01, 2010 15:39
Álgebra Elementar
-
- Equação do segundo grau
por VtinxD » Qui Jan 27, 2011 23:03
- 1 Respostas
- 3714 Exibições
- Última mensagem por douglaspezzin

Dom Jun 19, 2011 09:55
Desafios Médios
-
- Problema do segundo grau
por Alessandra Cezario » Seg Mai 02, 2011 16:52
- 1 Respostas
- 2961 Exibições
- Última mensagem por TheoFerraz

Seg Mai 02, 2011 17:29
Problemas do Cotidiano
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.