• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida sobre função continua

duvida sobre função continua

Mensagempor levyrc » Sex Abr 08, 2011 22:56

verifique se a função abaixo eh continua nos pontos dados:
10^-^x se x<0
3x-1 se 0\leq x\leq 2 para x=0 e para x=2
x^2 + \frac{2}{x} se x>2


e encontre os valores de c e k quem fazem com que a função seja continua:


2cx-3 se x < 1
cx+k se 1\leq x \leq 3
3x+3-k se x>3



vou ter uma prova essa semana q ñ entendo isso preciso pra poder pelo menos estudar um poko
levyrc
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Abr 08, 2011 22:08
Formação Escolar: ENSINO MÉDIO
Área/Curso: adm
Andamento: cursando

Re: duvida sobre função continua

Mensagempor Regina » Dom Abr 10, 2011 13:13

Boa tarde

Bom, eu penso que o que você deverá ter é uma função definida por ramos do género
f(x)={10}^{-x} se x<0, =3x+1 se 0\leqx\leq2 e, ={x}^{2}+\frac{2}{x} se x>2

Se voce quer saber se é contínua nos pontos x=0 e x=2 terá que calcular o limite da função nesses pontos, ou seja, \lim_{x\rightarrow0} f(x) e \lim_{x\rightarrow2} f(x). Isto vai lhe dar a continuidade da função nestes dois pontos. Mas se voce quiser saber a continuidade lateral, já vai ter que calcular para cada ponto o limite à direita e à esquerda do ponto.

Por exemplo plara x=0 faz \lim_{x\rightarrow{0}^{+}} f(x) e \lim_{x\rightarrow{0}^{-}} f(x). e o resultado vai lhe permitir dizer se a função é continua à direita, à esquerda, ou à direita e à esquerda do ponto que está a estudar.

Para calcular o limite basta substituir o x na função pelo valor do ponto que está a estudar. Para o ponto x=0 substitui o x da função por 0, e para o 2 a mesma coisa.

Quanto aos zeros, para saber o c e o K já vai utilizar o Teorema de Bolzano.

Para saber se existe um c tem que ter um intervalo onde a função seja contínua, e calcular a imagem dos valores desse intervalo.

Por exemplo se o intervalo for (2,5), calcula a imagem de 2 e a imagem de 5, depois vê se o valor de k dado está entre essas imagens que vce calculou. se estiver é porque existe pelo menos um c.

Para o Zero utiliza-se o corolário do Teorema de Bolzano.

Calculam-se as imagens dos pontos do intervalo dado, e multiplicam-se uma pela outra. para que exista pelo menos um zero, o resultado dessa multiplicação tem que ser inferior a zero: f(a)*f(b)<0, se isto ocorrer, há pelo menos um zero.

Espero ter ajudado!

Boa sorte
Regina
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Sex Fev 25, 2011 14:31
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: curso técnico em química
Andamento: cursando

Re: duvida sobre função continua

Mensagempor LuizAquino » Dom Abr 10, 2011 13:24

Eu recomendo que assista aos vídeos:
03. Cálculo I - Limites Laterias
http://www.youtube.com/watch?v=Su1UF7hiXkg

04. Cálculo I - Limites e Continuidade
http://www.youtube.com/watch?v=NOPEwktLxgw

Se após assistir aos vídeos você ainda tiver dúvidas, por favor poste-as aqui.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}