• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação exponencial

equação exponencial

Mensagempor vinicius cruz » Qui Mar 17, 2011 18:20

tendo como base as seguintes equações exponenciais {10}^{x+2}-91*{10}^{x}={3}^{x+6}-629*{3}^{x}

ax=0
b)x=2
c)x=3
d)x=10
e)x=1
vinicius cruz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Dom Mar 06, 2011 12:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: equação exponencial

Mensagempor Elcioschin » Qui Mar 17, 2011 18:41

10^(x + 2) - 91*(10^x) = 3^(x + 6) - 629*(3^x)

(10^x)*(10²) - 91*(10^x) = (3^x)*(3^6) - 629*(3^x)

(10^x)*100 - 91*(10^x) = 729*(3^x) - 629*(3^x)

9*(10^x) = 100*(3^x)

(3²)*(10^x) = (10²)*(3^x)

10^x/10² = 3^x/3²

10^(x - 2) = 3^(x - 2)

Como as bases dos expoentes são DIFERENTES a equação somente tem solução quando os expoente forem nulos:

x - 2 = 0

x = 2
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: equação exponencial

Mensagempor vinicius cruz » Qui Mar 17, 2011 19:29

obrigadoo ;)
vinicius cruz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Dom Mar 06, 2011 12:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}