• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida na Resolução de uma Função

Dúvida na Resolução de uma Função

Mensagempor brunnomaia » Dom Mar 06, 2011 11:07

Pessoal sou novo no fórum e este é meu primeiro tópico, desculpe se o tópico estiver no local errado.

Eu tenho 32 anos e estou querendo depois de velho tentar vestibular para Engenharia Civil, O fato é que estou com algumas apostilas de cursinho fazendo exercícios e esbarrei logo de cara na questão abaixo:

O fato é que a anos eu não vejo matemática então não sei nem por onde começar..

Eu tenho o resultado porém não consigo chegar nele, até imagino que seja bem simples mas minha cabeça não consegue puxar pela memória o que aprendi a anos atrás.
Anexos
Equação.JPG
Equação.JPG (5.77 KiB) Exibido 1699 vezes
brunnomaia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 06, 2011 10:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvida na Resolução de uma Função

Mensagempor LuizAquino » Dom Mar 06, 2011 11:40

Você quer calcular \frac{1}{m}.

Portanto, você quer o valor de \frac{1}{-2 + \sqrt{\frac{a^2}{b^2} + \frac{b^2}{a^2}  + 2}} .

Primeiro, vamos simplificar um pouco essa raiz.
\frac{1}{-2 + \sqrt{\frac{a^2}{b^2} + \frac{b^2}{a^2}  + 2}} = \frac{1}{-2 + \sqrt{\frac{a^4+b^4+2a^2b^2}{a^2b^2}}}

Usando o produto notável (x+y)^2=x^2+2xy+y^2, nós temos que:

= \frac{1}{-2 + \sqrt{\frac{(a^2+b^2)^2}{(ab)^2} } }

Como a e b são números positivos, podemos efetuar a simplificação entre a raiz quadrada e a potência 2.

= \frac{1}{-2 + \frac{a^2+b^2}{ab}}

= \frac{1}{\frac{-2ab + a^2 +b^2}{ab}}

Usando o produto notável (x-y)^2=x^2-2xy+y^2, temos que:

= \frac{1}{\frac{(a-b)^2}{ab}}

= \frac{ab}{(a-b)^2}

Agora, basta substituir os valores para a e b:
= \frac{0,998\cdot 1}{(0,998 - 1)^2} = 249.500

Sugestão
Acredito que o tópico a seguir deva lhe interessar:
Aulas de Matemática no YouTube
viewtopic.php?f=120&t=3818
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida na Resolução de uma Função

Mensagempor brunnomaia » Dom Mar 06, 2011 11:53

Muito Obrigado!

Eu estava tentando simplificar desde o começo substituindo o b por 1 , não lembrava dos produtos notáveis!
brunnomaia
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Mar 06, 2011 10:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: