• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Domínio de uma função

Domínio de uma função

Mensagempor john » Qua Fev 16, 2011 13:01

{t}^{2}{e}^{1-t}

Alguém me pode dizer o domínio desta função?
Ela entra na condição do logaritmo? Não estou entendendo.

Obrigado!
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Domínio de uma função

Mensagempor john » Qua Fev 16, 2011 21:43

Ninguém sabe?
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Domínio de uma função

Mensagempor Renato_RJ » Qua Fev 16, 2011 22:07

Amigão, tudo em paz ??

Seguinte, eu acho que essa função seja f: \mathbb{R} \rightarrow \mathbb{R^{+}}, logo o domínio da função é o conjunto dos Reais..

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Domínio de uma função

Mensagempor MarceloFantini » Qua Fev 16, 2011 23:22

Você decide o domínio. O maior domínio possível é \mathbb{R}, mas o domínio sempre deve ser dado. O que você quer dizer com condição do logaritmo?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Domínio de uma função

Mensagempor john » Sex Fev 18, 2011 18:12

Por exemplo: ln(x)
O Domínio é {x € IR: x>0}

Aqui não se aplica?
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Domínio de uma função

Mensagempor MarceloFantini » Sex Fev 18, 2011 18:28

O maior domínio possível para \ln x é esse, mas eu reitero: domínio é arbitrário, respeitando condições de existência. Na função que você postou, não há restrições de condição de existência, logo o maior domínio possível é \mathbb{R}, mas isso não quer dizer que o domínio não possa ser [0,1], ]e,\pi], etc.

P.S.: Acho que entendi o que você quer dizer. Você pergunta se pode existir \ln (t^2 e^{1-t})? Sim, com exceção de t=0, pois t^2 e^{1-t} > 0, \, \forall \,t \neq 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Domínio de uma função

Mensagempor john » Sáb Fev 19, 2011 14:31

Então funções desse género é sempre IR?.
Só tenho que ter atenção a ln, a fracções e a raízes certo?
john
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Fev 11, 2011 22:46
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Domínio de uma função

Mensagempor MarceloFantini » Sáb Fev 19, 2011 16:27

John, novamente, o domínio é arbitrário. Mas sim, o maior domínio pode ser o \mathbb{R}. E basicamente apenas essas funções, sim.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.