• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação - Dúvida

Radiciação - Dúvida

Mensagempor Danilo » Qui Ago 09, 2012 22:37

Não estou conseguindo concluir um exercício de radiciação, lá vai:

\sqrt[]{2} \cdot \sqrt[]{2 + \sqrt[]{2}} \cdot \sqrt[]{2 + \sqrt[]{2 + \sqrt[]{2}}} \cdot \sqrt[]{2 - \sqrt[]{2 + \sqrt[]{2}}}

Bom, vou postar aqui o que eu fiz e quero que por favor me digam onde estou errando !

\sqrt[]{ 2 \cdot \left(2 + \sqrt[]{2} \right) \cdot \left(2 + \sqrt[]{2 + \sqrt[]{2} } \right) \cdot \left(2 - \sqrt[]{2 + \sqrt[]{2}} \right)}


\sqrt[]{  \left(4 + 2 \sqrt[]{2} \right) \cdot \left(2 + \sqrt[]{2 + \sqrt[]{2} } \right) \cdot \left(2 - \sqrt[]{2 + \sqrt[]{2}} \right)}

\sqrt[]{\left(4 + 2 \sqrt[]{2} \right) \cdot \left[{\left(2 \right)}^{2}  - {\left(\sqrt[]{2 + \sqrt[]{2}} \right)}^{2}\right] }

\sqrt[]{\left(4 + 2 \sqrt[]{2} \right) \left(4 - \sqrt[]{6 + 4 \sqrt[]{2}} \right)}

Bom, depois daqui eu aplico a distributiva e multiplico normalmente mas não consigo chegar no resultado ! A resposta é 2... Errei até ali? Grato desde já :)
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Radiciação - Dúvida

Mensagempor MarceloFantini » Qui Ago 09, 2012 23:24

Note que

2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2^2 - \left( \sqrt{2 + \sqrt{2}} \right)^2 \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 4 - (2 + \sqrt{2}) \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 - \sqrt{2} \right)
= 2 \cdot \left( 2^2 - (\sqrt{2})^2 \right)
= 2 \cdot (4 - 2)
= 2 \cdot 2 = 4,

daí

\sqrt{2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)}
\sqrt{4} = 2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Radiciação - Dúvida

Mensagempor Danilo » Sex Ago 10, 2012 00:04

MarceloFantini escreveu:Note que

2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2^2 - \left( \sqrt{2 + \sqrt{2}} \right)^2 \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 4 - (2 + \sqrt{2}) \right)
= 2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 - \sqrt{2} \right)
= 2 \cdot \left( 2^2 - (\sqrt{2})^2 \right)
= 2 \cdot (4 - 2)
= 2 \cdot 2 = 4,

daí

\sqrt{2 \cdot \left( 2 + \sqrt{2} \right) \cdot \left( 2 + \sqrt{2 + \sqrt{2}} \right) \cdot \left( 2 - \sqrt{2 + \sqrt{2}} \right)}
\sqrt{4} = 2.


Valeu! :y:
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)