• Anúncio Global
    Respostas
    Exibições
    Última mensagem

É isso mesmo?

É isso mesmo?

Mensagempor Cleyson007 » Ter Mai 08, 2012 17:23

Boa tarde a todos!

Se n é um número ímpar, prove que {n}^{3}-n é sempre divisível por 24.

Gostaria de saber se minha resolução está correta!

Teremos: {n}^{3}-n=24k

É muito claro que a afirmação é verdadeira para n=1.

Um número ímpar é da forma (2n+1). Logo, teremos:

{(n+2)}^{3}-(n+2)\Rightarrow{n}^{3}+2{n}^{2}+4{n}^{2}+8n+4n+8-n-2

24k+6{n}^{2}+12n+6

6(4k)+6(2{n}^{2}+2n+1)\Rightarrow6(4k+{n}^{2}+2n+1)

É isso mesmo???

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: É isso mesmo?

Mensagempor pedroaugustox47 » Sex Mai 11, 2012 03:25

Provar que para todo n ímpar n^3-n é divisível por 24:
n^3-n=n.\left(n^2-1 \right)
mas se n for ímpar, temos que n é da forma 2k+1, substituindo vem:
n^3-n=\left(2k+1 \right)\left(\left(2k+1 \right)^2-1 \right)
n^3-n=\left(2k+1 \right)\left(4k^2+4k+1-1 \right)
n^3-n=\left(2k+1 \right)\left(4k^2+4k\right)
n^3-n=\left(2k+1 \right)\left(4 \right)\left(k^2+k \right)
n^3-n=\left(4 \right)\left(k \right)\left(k+1 \right)\left(2k+1 \right)
sabemos que \frac{\left(k \right)\left(k+1 \right)\left(2k+1 \right)}{6}=1^2+2^2+3^2+4^2+......k^2 e uma soma de quadrados é sempre natural, logo \left(k \right)\left(k+1 \right)\left(2k+1 \right) sempre é múltiplo de 6.
Chamando \left(k \right)\left(k+1 \right)\left(2k+1 \right) de 6z
n^3-n=4.6.z \Rightarrow n^3-n=24.z, logo 24 divide n^3-n .... C.Q.D
abraços :y:
pedroaugustox47
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Mai 11, 2012 01:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Sistema Elite de Ensino-CN/EPCAR
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: