• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação de raizes

Simplificação de raizes

Mensagempor LuizCarlos » Sáb Mai 05, 2012 00:14

Olá amigos professores! estou aqui resolvendo uns exercícios, porém essa questão não estou conseguindo resolver!

\sqrt[]{169{x}^{2}+104xy+16{y}^{2}} = \sqrt[]{{13}^{2}.{x}^{2}+{2}^{2}.13.2+{2}^{2}.{2}^{2}.{y}^{2}}=\sqrt[]{{13}^{2}.{x}^{2}}+\sqrt[]{{2}^{2}.26}+\sqrt[]{{2}^{2}.{2}^{2}.{y}^{2}}= 13.x + 2.\sqrt[]{26}+ 4.y

Não estou conseguindo entender como resolver! tentei dessa forma! obrigado desde já.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Simplificação de raizes

Mensagempor MarceloFantini » Sáb Mai 05, 2012 00:38

Luiz Carlos, isto é falso. Note que \sqrt{1 + 1} = \sqrt{2} \neq \sqrt{1} + \sqrt{1}, por exemplo.

Para a resolução deste problema é necessário perceber um trinômio quadrado perfeito:

169x^2 +104xy + 16y^2 = (13x)^2 + 2 (13x)(4y) + (4y)^2 = (13x+4y)^2.

Colocando a raíz quadrada, temos

\sqrt{169x^2 +104xy +16y^2} = \sqrt{(13x+4y)^2} = |13x+4y|

onde |k| representa o módulo do valor. Provavelmente é aceitável que você dê a resposta como \sqrt{(13x+4y)^2} = 13x+4y caso ainda não tenha aprendido isto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Simplificação de raizes

Mensagempor LuizCarlos » Sáb Mai 05, 2012 10:25

MarceloFantini escreveu:Luiz Carlos, isto é falso. Note que \sqrt{1 + 1} = \sqrt{2} \neq \sqrt{1} + \sqrt{1}, por exemplo.

Para a resolução deste problema é necessário perceber um trinômio quadrado perfeito:

169x^2 +104xy + 16y^2 = (13x)^2 + 2 (13x)(4y) + (4y)^2 = (13x+4y)^2.

Colocando a raíz quadrada, temos

\sqrt{169x^2 +104xy +16y^2} = \sqrt{(13x+4y)^2} = |13x+4y|

onde |k| representa o módulo do valor. Provavelmente é aceitável que você dê a resposta como \sqrt{(13x+4y)^2} = 13x+4y caso ainda não tenha aprendido isto.


Obrigado MarceloFantine, agora conseguir perceber esse trinômio quadrado perfeito! gostaria de saber a respeito dessa questão de módulo que você citou!
como ficaria com essa resposta!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Simplificação de raizes

Mensagempor MarceloFantini » Sáb Mai 05, 2012 14:00

É que temos a definição que \sqrt{x^2} = |x|, portanto apenas apliquei a definição. O módulo garante que seja um número positivo e portanto que a raíz seja positiva.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron