• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação de raizes

Simplificação de raizes

Mensagempor LuizCarlos » Sáb Mai 05, 2012 00:14

Olá amigos professores! estou aqui resolvendo uns exercícios, porém essa questão não estou conseguindo resolver!

\sqrt[]{169{x}^{2}+104xy+16{y}^{2}} = \sqrt[]{{13}^{2}.{x}^{2}+{2}^{2}.13.2+{2}^{2}.{2}^{2}.{y}^{2}}=\sqrt[]{{13}^{2}.{x}^{2}}+\sqrt[]{{2}^{2}.26}+\sqrt[]{{2}^{2}.{2}^{2}.{y}^{2}}= 13.x + 2.\sqrt[]{26}+ 4.y

Não estou conseguindo entender como resolver! tentei dessa forma! obrigado desde já.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Simplificação de raizes

Mensagempor MarceloFantini » Sáb Mai 05, 2012 00:38

Luiz Carlos, isto é falso. Note que \sqrt{1 + 1} = \sqrt{2} \neq \sqrt{1} + \sqrt{1}, por exemplo.

Para a resolução deste problema é necessário perceber um trinômio quadrado perfeito:

169x^2 +104xy + 16y^2 = (13x)^2 + 2 (13x)(4y) + (4y)^2 = (13x+4y)^2.

Colocando a raíz quadrada, temos

\sqrt{169x^2 +104xy +16y^2} = \sqrt{(13x+4y)^2} = |13x+4y|

onde |k| representa o módulo do valor. Provavelmente é aceitável que você dê a resposta como \sqrt{(13x+4y)^2} = 13x+4y caso ainda não tenha aprendido isto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Simplificação de raizes

Mensagempor LuizCarlos » Sáb Mai 05, 2012 10:25

MarceloFantini escreveu:Luiz Carlos, isto é falso. Note que \sqrt{1 + 1} = \sqrt{2} \neq \sqrt{1} + \sqrt{1}, por exemplo.

Para a resolução deste problema é necessário perceber um trinômio quadrado perfeito:

169x^2 +104xy + 16y^2 = (13x)^2 + 2 (13x)(4y) + (4y)^2 = (13x+4y)^2.

Colocando a raíz quadrada, temos

\sqrt{169x^2 +104xy +16y^2} = \sqrt{(13x+4y)^2} = |13x+4y|

onde |k| representa o módulo do valor. Provavelmente é aceitável que você dê a resposta como \sqrt{(13x+4y)^2} = 13x+4y caso ainda não tenha aprendido isto.


Obrigado MarceloFantine, agora conseguir perceber esse trinômio quadrado perfeito! gostaria de saber a respeito dessa questão de módulo que você citou!
como ficaria com essa resposta!
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Simplificação de raizes

Mensagempor MarceloFantini » Sáb Mai 05, 2012 14:00

É que temos a definição que \sqrt{x^2} = |x|, portanto apenas apliquei a definição. O módulo garante que seja um número positivo e portanto que a raíz seja positiva.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}