• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Demonstração

Demonstração

Mensagempor Well » Qua Mar 28, 2012 21:48

Bem,estou tendo um problema com a demonstração matemática,ainda estou aprendendo.

Tenho que demonstrar se a afirmação a baixo é verdadeira ou não

0 < a < b  \Rightarrow  \sqrt[]{a} < \sqrt[]{b}

Obrigado.
Well
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mar 28, 2012 21:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Demonstração

Mensagempor ednaldo1982 » Qua Mar 28, 2012 22:15

0 < 4 < 9 \Rightarrow \sqrt[]{4} < \sqrt[]{9}
Avatar do usuário
ednaldo1982
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Seg Mar 26, 2012 11:28
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: Demonstração

Mensagempor MarceloFantini » Qua Mar 28, 2012 23:34

Well, que tipo de ferramentas você tem ao seu dispor?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Demonstração

Mensagempor LuizAquino » Qui Mar 29, 2012 12:29

Well escreveu:Bem,estou tendo um problema com a demonstração matemática, ainda estou aprendendo.

Tenho que demonstrar se a afirmação a baixo é verdadeira ou não

0 < a < b  \Rightarrow  \sqrt[]{a} < \sqrt[]{b}


Para provar essa afirmação vamos usar o seguinte produto notável:

\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right) = a - b , com a e b números reais positivos.

Se desejar provar esse produto notável o processo é simples. Basta aplicar a distributiva.

Pois bem. Vejamos como usar esse produto notável para demonstrar a afirmação.

Por hipótese, temos que 0 < a < b. Isso significa que a e b são números reais positivos e diferentes de zero, sendo que a é menor do que b.

Note que podemos escrever que:

a < b
a - b < 0

Como a e b são positivos, podemos usar o produto notável citado anteriormente. Temos então que:

\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right) < 0

Como \sqrt{a} e \sqrt{b} são números positivos (pela definição de raiz quadrada), temos que \sqrt{a} + \sqrt{b} é um número positivo.

Sabemos que a e b não são zero. Sendo assim, temos que \sqrt{a} + \sqrt{b} não é zero. Podemos então dividir toda a inequação anterior por essa soma. Note que a inequação não mudará o seu sentido, pois \sqrt{a} + \sqrt{b} é um número positivo. Temos então que:

\dfrac{\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right)}{\sqrt{a} + \sqrt{b}} < \dfrac{0}{\sqrt{a} + \sqrt{b}}

\sqrt{a} - \sqrt{b} < 0

\sqrt{a} < \sqrt{b}

Isso conclui a prova de que a afirmação é verdadeira.

Observação

ednaldo1982 escreveu:0 < 4 < 9 \Rightarrow \sqrt[]{4} < \sqrt[]{9}


Apenas um exemplo numérico não serve como prova que de que a afirmação é verdadeira.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: