• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Identificar erro na resolução, se houver

Identificar erro na resolução, se houver

Mensagempor Danilo » Seg Mar 19, 2012 22:46

Considere a desigualdade:

2x - 4/ x + 1 > 1

a questão foi resolvida da seguinte maneira:

Mulplicando-se os dois membros por x+1 obtemos:

2x - 4 > x +1

Somando-se 4 aos dois membros temos:

2x > x + 5

Dimuindo-se x dos dois membros, obtemos finalmente que:

x > 5

Vi alguns erros, mas não sei como colocá-los em ordem no exercício. Me corrijam se eu estiver errado.

primeiro: quem resolveu o problema deveria ter considerado que x + 1 tem que ser diferente de zero, ou seja, maior ou menor. Então, deveria ter considerado os casos em que x+ 1 é positivo, e negativo.

correto?
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Identificar erro na resolução, se houver

Mensagempor MarceloFantini » Seg Mar 19, 2012 23:20

Para evitar erros e perdas de tempo, ao invés de cometer o equívoco clássico de multiplicar por x+1 faça o seguinte:

\frac{2x-4}{x+1} > 1 \iff \frac{2x-4}{x+1} - 1 > 0 \iff \frac{2x-4 -(x+1)}{x+1} > 0 \iff

\iff \frac{x-3}{x+1} > 0.

Agora analise.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Identificar erro na resolução, se houver

Mensagempor Juvenal » Qua Mar 21, 2012 10:08

Amigos, observem que ficaria para analisar assim:

\frac{x-5}{x+1}>0

Observem a validação:

1. o resultado é um intervalo de números reais maiores que 5.
2. substitua, na expressão, o X pelo 5, por números maiores que 5 e por números menores que 5 e veja para cada caso quando a expressão é verdadeira.

Contem comigo,
Juvenal
Juvenal
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Mar 20, 2012 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharel em Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.