• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Princípio da Indução Finita

Princípio da Indução Finita

Mensagempor silvia fillet » Qui Out 20, 2011 12:04

Por gentileza, alguém pode me ajudar nessa resolução:
Demonstre que:
1.2+2.3+3.4+...+n(n+1) = n.(n+1).(n+2)/3 , para n natural

(Dica) estude demonstrações por indução finita.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Princípio da Indução Finita

Mensagempor silvia fillet » Qui Out 20, 2011 12:27

silvia fillet escreveu:Por gentileza, alguém pode me ajudar nessa resolução:
Demonstre que:
1.2+2.3+3.4+...+n(n+1) = n.(n+1).(n+2)/3 , para n natural

(Dica) estude demonstrações por indução finita.


Será que é assim:
S(1) é verdadeira pois S(1) = [1.(1+1)(1+2)/3] =2
Se calcularmos S(1) usando a expressão do primeiro membro também encontrará o resultado 2 pois
S(1) 1.2 = 2

Vamos supor a veracidade de S(n) e concluir pela veracidade de S(n+1)
Com efeito
S(n+1) = 1.2+2.3+3.4 +n(n+1)+(n+1)(n+2)
Usando a hipótese de indução e substituindo o valor conhecido de S(n) vem:
S(n+1) = [n(n+1)(n+2)/3] = (n=1)(n+2)
Desenvolvendo e simplificando a expressão acima fica:
S(n+1) = [n(n+1)(n+2)+3(n+1)(n+2)]/3
Colocando (n+2) em evidencia, fica:
S(n+1) = [(n+2)[n(n+1) +3(n+1)]]/3
Colocando agora (n+1) em evidencia, vem finalmente:
S(n+1) = [n(n+1)(n+2)(n+3)]/3 que é a mesma fórmula para (n+1). Logo, fica provada a veracidade da formula dada para todo n natural.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Princípio da Indução Finita

Mensagempor MarceloFantini » Qui Out 20, 2011 18:54

Não entendi muito bem o que você fez para a indução, a demonstração para o primeiro caso está certa. Aqui vai:

S(n+1) = S(n) + (n+1)(n+2) = \frac{n(n+1)(n+2)}{3} + (n+1)(n+2) =

= \frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3} = \frac{(n+1)(n+2)(n+3)}{3}

Que prova a veracidade.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Princípio da Indução Finita

Mensagempor silvia fillet » Sex Out 21, 2011 17:33

MarceloFantini escreveu:Não entendi muito bem o que você fez para a indução, a demonstração para o primeiro caso está certa. Aqui vai:

S(n+1) = S(n) + (n+1)(n+2) = \frac{n(n+1)(n+2)}{3} + (n+1)(n+2) =

= \frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3} = \frac{(n+1)(n+2)(n+3)}{3}

Que prova a veracidade.


Obrigada
Marcelo
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?