• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Princípio da Indução Finita

Princípio da Indução Finita

Mensagempor silvia fillet » Qui Out 20, 2011 12:04

Por gentileza, alguém pode me ajudar nessa resolução:
Demonstre que:
1.2+2.3+3.4+...+n(n+1) = n.(n+1).(n+2)/3 , para n natural

(Dica) estude demonstrações por indução finita.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Princípio da Indução Finita

Mensagempor silvia fillet » Qui Out 20, 2011 12:27

silvia fillet escreveu:Por gentileza, alguém pode me ajudar nessa resolução:
Demonstre que:
1.2+2.3+3.4+...+n(n+1) = n.(n+1).(n+2)/3 , para n natural

(Dica) estude demonstrações por indução finita.


Será que é assim:
S(1) é verdadeira pois S(1) = [1.(1+1)(1+2)/3] =2
Se calcularmos S(1) usando a expressão do primeiro membro também encontrará o resultado 2 pois
S(1) 1.2 = 2

Vamos supor a veracidade de S(n) e concluir pela veracidade de S(n+1)
Com efeito
S(n+1) = 1.2+2.3+3.4 +n(n+1)+(n+1)(n+2)
Usando a hipótese de indução e substituindo o valor conhecido de S(n) vem:
S(n+1) = [n(n+1)(n+2)/3] = (n=1)(n+2)
Desenvolvendo e simplificando a expressão acima fica:
S(n+1) = [n(n+1)(n+2)+3(n+1)(n+2)]/3
Colocando (n+2) em evidencia, fica:
S(n+1) = [(n+2)[n(n+1) +3(n+1)]]/3
Colocando agora (n+1) em evidencia, vem finalmente:
S(n+1) = [n(n+1)(n+2)(n+3)]/3 que é a mesma fórmula para (n+1). Logo, fica provada a veracidade da formula dada para todo n natural.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: Princípio da Indução Finita

Mensagempor MarceloFantini » Qui Out 20, 2011 18:54

Não entendi muito bem o que você fez para a indução, a demonstração para o primeiro caso está certa. Aqui vai:

S(n+1) = S(n) + (n+1)(n+2) = \frac{n(n+1)(n+2)}{3} + (n+1)(n+2) =

= \frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3} = \frac{(n+1)(n+2)(n+3)}{3}

Que prova a veracidade.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Princípio da Indução Finita

Mensagempor silvia fillet » Sex Out 21, 2011 17:33

MarceloFantini escreveu:Não entendi muito bem o que você fez para a indução, a demonstração para o primeiro caso está certa. Aqui vai:

S(n+1) = S(n) + (n+1)(n+2) = \frac{n(n+1)(n+2)}{3} + (n+1)(n+2) =

= \frac{n(n+1)(n+2) + 3(n+1)(n+2)}{3} = \frac{(n+1)(n+2)(n+3)}{3}

Que prova a veracidade.


Obrigada
Marcelo
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron