por xpanhol » Ter Out 18, 2011 15:07
estou com umas duvidas num exercicio de induçao matematica
onde qualquer potencia de 10 é um multiplo de 6 mais 4.
10^n=6a + 4, a E N
-
xpanhol
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Out 18, 2011 15:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: informatica
- Andamento: cursando
por LuizAquino » Ter Out 18, 2011 16:07
xpanhol escreveu:qualquer potencia de 10 é um multiplo de 6 mais 4.
10^n=6a + 4, a E N
Para
n=1 a afirmação é verdadeira, já que temos:

Suponha que para
n essa afirmação seja verdadeira. Usando essa suposição, devemos provar que a afirmação é válida para
n+1.
Vamos começar notando que:

Mas por suposição, temos que a afirmação é verdadeira para
n. Sendo assim, existe um número natural
a tal que:




Como
a é um número natural, temos que 10
a+6 é um outro número natural. Vamos chamar esse número de
b. Desse modo, temos que:

Logo, segue por indução que a afirmação é válida para qualquer número natural
n.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por xpanhol » Qua Out 19, 2011 18:03
se vamos n+1 porque é que depois na equaçao aparece aquele 10???? é isso que nao percebo nestas coisas
-
xpanhol
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Out 18, 2011 15:01
- Formação Escolar: GRADUAÇÃO
- Área/Curso: informatica
- Andamento: cursando
por LuizAquino » Qua Out 19, 2011 20:41
xpanhol escreveu:se vamos n+1 porque é que depois na equaçao aparece aquele 10???? é isso que nao percebo nestas coisas
Eu recomendo que você faça uma revisão sobre as propriedades de potência. Por exemplo, vide a página abaixo para um resumo básico:
Propriedades das potênciashttp://mundoeducacao.uol.com.br/matemat ... encias.htm
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Indução Matemática] Ajuda !
por rbhorvath » Qua Nov 21, 2012 15:02
- 14 Respostas
- 7433 Exibições
- Última mensagem por M_Junior

Sáb Abr 05, 2014 22:12
Álgebra Elementar
-
- [Provas por Indução Matemática] Ajuda, por favor!
por aprendizdematematico » Seg Abr 30, 2012 14:23
- 1 Respostas
- 1685 Exibições
- Última mensagem por MarceloFantini

Sáb Mai 05, 2012 20:56
Estatística
-
- [hipótese da indução] Indução matemática
por leonardoandra » Sáb Out 12, 2013 22:58
- 1 Respostas
- 2579 Exibições
- Última mensagem por leonardoandra

Seg Out 14, 2013 20:10
Equações
-
- Indução Matemática
por gramata » Qua Set 02, 2009 16:52
- 0 Respostas
- 2999 Exibições
- Última mensagem por gramata

Qua Set 02, 2009 16:52
Problemas do Cotidiano
-
- Indução Matemática
por Abelardo » Qui Mar 31, 2011 03:04
- 1 Respostas
- 2440 Exibições
- Última mensagem por LuizAquino

Qui Mar 31, 2011 11:27
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.