• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Princípio de Indução Finita (PIF)

Princípio de Indução Finita (PIF)

Mensagempor Jorge Rodrigo » Qui Jun 09, 2011 17:37

Boa tarde!

Alguém poderia me ajudar a provar, por indução, a seguinte questão: n!\geq{2}^{n},\forall n\geq 4
Meu desenvolvimento:
Definição: n!=n.\left(n-1 \right).\left(n-2 \right) ... 3.2.1



Como viram não consegui igualar os dois membros para poder afirmar a veracidade do PIF para a proposição dada.
Jorge Rodrigo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mai 18, 2011 18:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Matemática Aplicada
Andamento: cursando

Re: Princípio de Indução Finita (PIF)

Mensagempor MarceloFantini » Qui Jun 09, 2011 20:44

VocÊ fez errado, não pode sair usando a desigualdade, você tem que sair do primeiro membro e no final mostrar que é maior ou igual ao segundo membro. Assim:

(k+1)! = (k+1)k! \geq (k+1)2^k \geq 2^k \cdot 2 = 2^{k+1}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}