• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Princípio de Indução Finita (PIF)

Princípio de Indução Finita (PIF)

Mensagempor Jorge Rodrigo » Qui Jun 09, 2011 17:37

Boa tarde!

Alguém poderia me ajudar a provar, por indução, a seguinte questão: n!\geq{2}^{n},\forall n\geq 4
Meu desenvolvimento:
Definição: n!=n.\left(n-1 \right).\left(n-2 \right) ... 3.2.1

1º Passo:\ verificar\ a\ veracidade\ para\ p(4):

\Rightarrow n=4

\Rightarrow4!\geq{2}^{4}

\Rightarrow4.3.2.1\geq16

\Rightarrow24\geq16



2º Passo: supor p(k), \,com k \epsilon \,Z\, estritamente \, positivo, verdadeira:

k!={2}^{k}

e provar que decorre a veracidade de p(k+1), isto é:

(k+1).k!\geq{2}^{k+1}

\Rightarrow(k+1).{2}^{k}\geq{2}^{k+1}


\Rightarrow{2}^{k}.k+{2}^{k}\geq{2}^{k}.2

Como viram não consegui igualar os dois membros para poder afirmar a veracidade do PIF para a proposição dada.
Jorge Rodrigo
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mai 18, 2011 18:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Matemática Aplicada
Andamento: cursando

Re: Princípio de Indução Finita (PIF)

Mensagempor MarceloFantini » Qui Jun 09, 2011 20:44

VocÊ fez errado, não pode sair usando a desigualdade, você tem que sair do primeiro membro e no final mostrar que é maior ou igual ao segundo membro. Assim:

(k+1)! = (k+1)k! \geq (k+1)2^k \geq 2^k \cdot 2 = 2^{k+1}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.