Olá amigos.
Quem tem interesse em formar um grupo de estudos sobre teoria de grupos?
Seja A um conjunto não vazio e * uma operação em A.
A estrutura (A,*) é denomidada um:
1. semi-grupo se * uma operação associativa;
2. monoide se * é uma operação associativa e tem um elemento neutro e pertencente a A;
3. grupo se * é associativa, tem um elemento neutro 'e' pertencente a A, e cada elemento 'a' pertencente a A invertertivel na operação *.
Estava estudando sobre isso utilizando o exmplo da rotação e reflexão de quadrados, onde as posições dos numeros mudavam dependendo da rotação ou reflexão.
Que operações representariam a rotação e a reflexão? Neste caso, como eu demonstraria o valor neutro?
Entendi que para uma rotação, eu poderia "somar 90º" para formar 4 posições diferentes para o quadrado.
A operação referida neste caso é mais amplo que os operadores matemáticos?
Que operação representa a reflexão?
Onde encontro mais material on-line sobre isso?

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)