por Luiz Augusto Prado » Seg Mai 30, 2011 21:37
Olá amigos.
Quem tem interesse em formar um grupo de estudos sobre teoria de grupos?
Seja A um conjunto não vazio e * uma operação em A.
A estrutura (A,*) é denomidada um:
1. semi-grupo se * uma operação associativa;
2. monoide se * é uma operação associativa e tem um elemento neutro e pertencente a A;
3. grupo se * é associativa, tem um elemento neutro 'e' pertencente a A, e cada elemento 'a' pertencente a A invertertivel na operação *.
Estava estudando sobre isso utilizando o exmplo da rotação e reflexão de quadrados, onde as posições dos numeros mudavam dependendo da rotação ou reflexão.
Que operações representariam a rotação e a reflexão? Neste caso, como eu demonstraria o valor neutro?
Entendi que para uma rotação, eu poderia "somar 90º" para formar 4 posições diferentes para o quadrado.
A operação referida neste caso é mais amplo que os operadores matemáticos?
Que operação representa a reflexão?
Onde encontro mais material on-line sobre isso?
-

Luiz Augusto Prado
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Sex Nov 27, 2009 18:55
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Teoria de Grupos] Demonstrações
por Bruna_Ferreira » Seg Jan 05, 2015 16:18
- 1 Respostas
- 1664 Exibições
- Última mensagem por adauto martins

Sex Jan 09, 2015 16:05
Álgebra Elementar
-
- [Teoria dos Grupos] Derivar Teorema
por Imscatman » Qua Fev 19, 2014 18:46
- 1 Respostas
- 1075 Exibições
- Última mensagem por Imscatman

Qui Fev 20, 2014 00:11
Lógica
-
- Grupos e Subgrupos
por Renato_RJ » Sex Jan 21, 2011 13:18
- 4 Respostas
- 4627 Exibições
- Última mensagem por Renato_RJ

Sex Jan 21, 2011 16:39
Álgebra Elementar
-
- Álgebra: Grupos de matrizes
por Caeros » Seg Abr 04, 2011 13:09
- 3 Respostas
- 2249 Exibições
- Última mensagem por LuizAquino

Ter Abr 05, 2011 10:41
Álgebra Elementar
-
- [Estruturas Algébricas] - Grupos
por MestreLC » Sex Jan 01, 2016 09:53
- 1 Respostas
- 2610 Exibições
- Última mensagem por adauto martins

Seg Jan 25, 2016 15:49
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.