• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questão dos correios

questão dos correios

Mensagempor hevhoram » Seg Mai 16, 2011 16:59

Uma empresa confeccionou catálogos dos tipos A e B para presentear seus clientes. Um catálogo tipo A pesa 240 g e um do tipo B, 350g. Os catálogos foram organizados em pacotes, contendo cada um deles apenas catálogos de um mesmo tipo.

Com base nas informações do texto, é correto afirmar que, se todos os pacotes tiverem o mesmo peso e se esse peso for inferior a 10kg, então cada pacote pesará

A) 8,2 kg
B) 8,3 kg
C) 8,4 kg
D) 8 kg
E) 8,1 kg

(tentei fazer pelo mdc: mais nao entendi como proceder ????) daí nao sei nem por onde tentar???
Avatar do usuário
hevhoram
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qua Jun 02, 2010 11:43
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: informática educacional
Andamento: formado

Re: questão dos correios

Mensagempor FilipeCaceres » Seg Mai 16, 2011 17:09

Faça mmc(240,350)=8400\,g=8,4\,kg

Espero que seja isso.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}