• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Indução Finita FIbonacci

Indução Finita FIbonacci

Mensagempor Garota nerd » Ter Mai 03, 2011 17:52

provar que:
Fn²=(Fn-1).F(n+1)+ (-1)^n+1

comecei assim:
1-1-2-3-5-8-13-21-34-55-89
para n=3.
F(3)=2.
F(2)=1
F(4)=3
2²=1.3+1->4=4,ok!
para n=k.
Fk²=F(k-1).F(k+1)+(-1)^k+1
para n=k+1.
F(k+1)²=F(k+1-1).F(k+1+1)+(-1)^k+1+1
F(k²+2k+1)=Fk.F(k+2)+(-1)^k
Oque eu faço agora?Tenho que provar a igualdade.

não usei o editor de fórmulas porque tenho que sair agora.^^
Se alguém me ajudar fico grata!
Garota nerd
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mai 03, 2011 17:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Indução Finita FIbonacci

Mensagempor FilipeCaceres » Ter Mai 03, 2011 21:02

comecei assim:
1-1-2-3-5-8-13-21-34-55-89
para n=3.
F(3)=2.
F(2)=1
F(4)=3
2²=1.3+1->4=4,ok!


Observe que tem um erro na sua solução, e provavelmente e sua função também esta errada.
Para n=3 temos,
f(3^2)=f(3-1).f(3+1)+(-1)^{3+1}
f(9)=f(2).f(4)+1

Temos que,
f(9)=34
f(2)=1
f(4)=3

Desta forma,
f(9)=f(2).f(4)+1
34\neq 1.3+1

Revise a função!!

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Indução Finita FIbonacci

Mensagempor LuizAquino » Ter Mai 03, 2011 22:54

O problema na verdade está na escrita do exercício, que não foi adequada.

Temos a função F(n) que fornece o n-ésimo termo da sequência de Fibonacci.

Essa função é definida como:
F(n) = \begin{cases}1\textrm{, se } n = 1 \textrm{ ou } n = 2 \\ F(n-1) + F(n-2)\textrm{, se } n \geq 3 \end{cases} , com n natural não nulo.

Vejamos alguns valores para essa função:
F(1) = 1
F(2) = 1
F(3) = F(2) + F(1) = 2
F(4) = F(3) + F(2) = 3
F(5) = F(4) + F(3) = 5
F(6) = F(5) + F(4) = 8

Agora, o que se deseja provar é: [F(n)]^2 = F(n-1)\cdot F(n+1) + (-1)^{n+1}, com n > 1.

Para n=2 é trivial verificar que a relação vale.

Suponha que a relação é válida para n.

Precisamos provar que a relação vale para n + 1: [F(n+1)]^2 =F(n)\cdot F(n+2) + (-1)^{n+2} .

Vamos desenvolver o lado direito da equação para obter o esquerdo.

F(n)\cdot F(n+2) + (-1)^{n+2} = F(n)\cdot [F(n+1)+F(n)] + (-1)^{n+1}(-1)

= F(n)\cdot F(n+1)+ [F(n)]^2 - (-1)^{n+1} (nesse passo usamos a hipótese de indução)

= F(n)\cdot F(n+1)+ F(n-1)\cdot F(n+1) + (-1)^{n+1} - (-1)^{n+1}

= [F(n)+ F(n-1)]\cdot F(n+1)

= F(n+1)\cdot F(n+1)

= [F(n+1)]^2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Indução Finita FIbonacci

Mensagempor Garota nerd » Qui Mai 05, 2011 00:43

Obrigada a todos!
gostei daqui
bjus^^
Garota nerd
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Mai 03, 2011 17:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?