• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potência/Números Primos

Potência/Números Primos

Mensagempor Abelardo » Dom Mar 20, 2011 20:23

62) Sabe-se que {2}^{{2}^{r}}+1 é um número primo para r= 1,2,3 ou 4, mas não é para 5. Quantos fatores primos tem o número {2}^{32}-1?





Obs: Percebi que a expressão {2}^{32}-1 é a diferença de dois quadrados, transformei para ({2}^{16}-1).({2}^{16}+1). Transformei ({2}^{16}-1) em ({2}^{8}-1).({2}^{8}+1).

({2}^{8}-1) dá como resultado 255=3x5x7 e ({2}^{8}+1) dá como resultado 257, que é primo. Logo tenho que ({2}^{16}-1) tem 4 números primos... agora fica a minha dúvida, como posso saber se ({2}^{16}+1) é primo ou não? (Lembrando que eu devo fazer questões dessa, futuramente, só com lápis, papel e borracha... a prova OBM)!
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Potência/Números Primos

Mensagempor LuizAquino » Dom Mar 20, 2011 20:37

Abelardo escreveu:como posso saber se ({2}^{16}+1) é primo ou não?


Leia com atenção o enunciado da questão: "Sabe-se que 2^{{2}^{r}}+1 é um número primo para r= 1, 2, 3 ou 4, mas não é para 5".

Pergunta: quanto vale 2^{{2}^{r}}+1 para r=4?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Potência/Números Primos

Mensagempor Abelardo » Dom Mar 20, 2011 21:42

Obrigado profº. Aquino, foi por causa do sinal.
{2}^{16}+1 é primo, logo terei 5 fatores para {2}^{32}-1
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}