• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos Numéricos

Conjuntos Numéricos

Mensagempor Abelardo » Qui Mar 10, 2011 13:45

45. Considere x, y e z números naturais. Na divisão de x por y obtém-se quociente z e resto 8. Sabe-se que a representação decimal de \frac{x}{y} é a dízima periódica 7,363636... Então, o valor de x + y + z é:

a)190
b)193
c)191
d)192


Só encontro 190 como resposta, mas a resposta é 191! Alguma luz, não quero que resolvam para mim, quero alguma dica.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Conjuntos Numéricos

Mensagempor Renato_RJ » Qui Mar 10, 2011 15:03

Abelardo, vamos ver esse problema...

\frac{x}{y} = 7,36363636... \Rightarrow \, \frac{x}{y} = 7 + \frac{36}{99}

Sabemos que:
x = z \cdot y + 8 \Rightarrow \, \frac{x}{y} = z + \frac{8}{y}

Agora, faça a substituição e veja o resultado, é 191 mesmo...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Conjuntos Numéricos

Mensagempor Abelardo » Sex Mar 11, 2011 22:27

Caramba, deixei a geratriz na forma de fração irredutível e nem me toquei que poderia destrinchá-la !! Valeu mesmo, consegui.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Conjuntos Numéricos

Mensagempor Renato_RJ » Sáb Mar 12, 2011 00:48

:y:
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)