• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos

Conjuntos

Mensagempor Juliane » Dom Fev 20, 2011 20:31

Se A = { x \epsilon N / k < x <\sqrt[]{5} } onde k é a solução \frac{x-2}{3} - \frac{x-3}{2}= 1 , B = [m,n[, onde m e n são raízes da equação x² - 2x – 15= 0, C = {0} \cup [2,7[ e D = {x \epsilon R/ \frac{x-2}{4}+\frac{2x+8}{5} < 5}

Determine (D - ?) \cup (C \cap B)

Eu encontrei:
A = ]-1, 2]
B = [-5,3[
C = {0,2,3,4,5,6}
D = ]-\propto, 6]
Juliane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sáb Set 04, 2010 17:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Edificações
Andamento: cursando

Re: Conjuntos

Mensagempor Molina » Seg Fev 21, 2011 16:05

Boa tarde, Juliane.

Sua dúvida é referente aos conjuntos A, B, C e D ou as operações entre eles?

Vou mostrar a cara destes conjuntos que eu citei acima e caso você tenha dúvida em como opera-los, avise, ok?

Procure além de colocar a questão informar também onde estão suas maiores dificuldades e até mesmo o que você tentou fazer. Isso facilita quem quer te ajudar. Mas vamos lá:

A= \{ x \in N / k < x \leq \sqrt{5} \} onde k é a solução \frac{x-2}{3} - \frac{x-3}{2}= 1

Resolvendo a equação para encontrar o valor de k:

\frac{x-2}{3} - \frac{x-3}{2}= 1

\frac{2x-4-3x+9}{6}= 1

2x-4-3x+9= 6

-x+5= 6

x= -1=k

Como os valores de A são naturais maiores do que -1 e menores do que raiz de 5, temos que:

A=\{0,1,2\}

Obs.: Há divergências quanto ao ZERO pertencer ou não aos números naturais. Eu considerei ele natural, mas você precisa ver como seu professor definiu a vocês.



B = [m,n[, onde m e n são raízes da equação x^2 - 2x - 15= 0

Resolvendo a equação temos que as raízes são -3 e 5.

Assim:

B = [-3,5[



C = \{0\} \cup [2,7[

Não há o que fazer. O conjunto está pronto.



D = \{ x \in R/ \frac{x-2}{4}+\frac{2x+8}{5} \leq 5 \}

Resolvendo a inequação, temos:

\frac{x-2}{4}+\frac{2x+8}{5} \leq 5

\frac{5x-10+8x+32}{20} \leq 5

5x-10+8x+32 \leq 100

13x \leq 78

x \leq 6

Logo:

D = \{ x \leq 6 \}


Agora que você já tem os conjuntos, basta fazer a operação entre eles.

Qualquer coisa, informe.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Conjuntos

Mensagempor Juliane » Ter Fev 22, 2011 09:10

Na verdade a minha dúvida era referente a operação entre eles, inclusive eu já havia colocado os elementos dos conjuntos que consegui encontrar...
mas obrigada, eu identifiquei o meu erro, foi no conjunto B
Juliane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sáb Set 04, 2010 17:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Edificações
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D