• Anúncio Global
    Respostas
    Exibições
    Última mensagem

números irracionais

números irracionais

Mensagempor jose henrique » Sáb Fev 12, 2011 20:35

estou com uma questão que pede para provar que os números abaixos são irracionais.

\sqrt[2]{2}+\sqrt[2]{3}

fiz de forma

\sqrt[]{2}+\sqrt[]{3}= \sqrt[]{3+2}= \sqrt[]{5}

\sqrt[]{5}=\frac{a}{b} \Rightarrow {\left(\sqrt[]{5} \right)}^{2}= {\left(\frac{a}{b} \right)}^{2} \Rightarrow 5 = \frac{{a}^{2}}{{b}^{2}}\Rightarrow5{b}^{2}={a}^{2}

bem então se b é um número natural múltiplo de 5 então a deverá ser míltiplo de 5.

até aí o meu racíocinio está correto.
obrigado pela ajuda
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: números irracionais

Mensagempor Dan » Sáb Fev 12, 2011 21:07

jose henrique, em primeiro lugar \sqrt[]{2}+\sqrt[]{3} não é \sqrt[]{2+3}, muito menos \sqrt[]{5}. Você não pode sair somando raízes quadradas dessa forma, pois é como somar duas variáveis diferentes (x + y).

A ideia desse tipo de demonstração que você começou é da prova por absurdo. Você começa dizendo que uma raíz quadrada é igual a uma fração (o que já é um absurdo, já que essas raízes quadradas são irracionais) para no final constatar que se você seguir com esse processo algébrico obterá (daí sim) "o" absurdo (uma fração que pode ser simplificada para sempre, por exemplo).

Entendeu?
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: números irracionais

Mensagempor jose henrique » Sáb Fev 12, 2011 21:18

então eu terei que fazer este procedimento para cada raiz em questão, para depois que comprovadas que são números irracionais eu concluir que somando dois números irracionais o resultado será outro irracional.
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: números irracionais

Mensagempor jose henrique » Sáb Fev 12, 2011 21:27

por exemplo nesta questão que pede Se i é um número irracional e n é um número inteiro então i + n é um número irracional.

i + n= \frac{m}{n} \Rightarrow n(n+i)=m \Rightarrow {n}^{2} + ni = m\Rightarrow i = \frac{m -{n}^{2}}{n}

sendo que n\neq 0

o que provaria, pois como i é irracional não poderia ser igualado a um racional e desta forma i + n seria racional
está correto?
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: números irracionais

Mensagempor Dan » Sáb Fev 12, 2011 21:31

Aí que mora o perigo. Não é correto afirmar que a soma de dois números irracionais é sempre irracional. No caso inicial será irracional, mas por exemplo, 2 + \sqrt[]{2} e 2 - \sqrt[]{2} são dois números irracionais que quando somados dão 4. Então não dá pra generalizar.

Eu estou aqui pensando, e não consegui chegar a nenhuma estratégia. Provar que as raízes separadamente são irracionais é fácil, mas que argumento você vai usar no final para dizer que são irracionais?
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: números irracionais

Mensagempor Dan » Sáb Fev 12, 2011 21:39

Tudo bem, um inteiro somado com um irracional é irracional. Parece que você não concluiu essa outra demonstração, mas a afirmação está correta. Porém, isso ainda não resolve o problema da soma de dois irracionais.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 26 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?