• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equações literais do 2°grau

equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 12:19

resolva esta equaçãe sujeitas a parâmetros , supostas possíveis em função dos seus coenficientes


A) \frac{x^2}{ab}-\frac{x}{b}=\frac{2a-2x}{a}


bom , a minha duvida é como encontrar a outra raiz dessa equaçao ,
já q tem tudas possíveis raizes pra esta equação !
eu vou postar como eu encontrei uma .


B) x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0


essa eu nem consegui encontrar nenhuma raiz .
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 13:06

A) \frac{x^2-ax}{ab}=\frac{2ab-2bx}{ab}

x^2-ax=2ab-2bx

x(x-a)=-2b(-a+x)

x=\frac{-2b(x-a)}{(x-a)}

x=-2b

Agora falta encontra a outra raiz q é {a} e eu nao sei como faz pra encontra-la?

B)x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0

a=1 ;    b= -a\sqrt[]{2x}      ;     c= -\frac{3}{2}a^2

\Delta={b}^{2}-4ac

\Delta=\left(-a\sqrt[]{2x} \right)^2-4.1.\frac{-3}{2}a^2

\Delta=2a^2x+6a^2

\Delta=\sqrt[]{2a^2x+6a^2}

\Delta=a^2\sqrt[]{2x+6}

x=\frac{-b+-\sqrt[]{\Delta}}{2a} \rightarrow x^1=\frac{a\sqrt[]{2x}+a^2\sqrt[]{2x+6}}{2} \rightarrow x^2=\frac{a\sqrt[]{2x}-(a^2\sqrt[]{2x+6})}{2}


foi o q eu consegui fazer mais a resposta nao é essa .
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equações literais do 2°grau

Mensagempor Molina » Dom Jan 23, 2011 13:43

Boa tarde, Stanley.

Em relação a questão A) basta você mudar os termos na parte que coloca em evidência em ambos os lados, veja:

x^2-ax=2ab-2bx

x^2+2bx=2ab+ax

x(x+2b)=a(2b+x)

x=\frac{a(2b+x)}{(x+2b)}

x=a

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 16:25

entendi obrigado .

e enquanto a alternativa B) , como q fica ?
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: equações literais do 2°grau

Mensagempor Molina » Dom Jan 23, 2011 17:22

stanley tiago escreveu:entendi obrigado .

e enquanto a alternativa B) , como q fica ?

Boa tarde,

Você cometeu um erro fazendo b=-a\sqrt{2x}:
stanley tiago escreveu:
B)x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0

a=1 ;    b= -a\sqrt[]{2x}      ;     c= -\frac{3}{2}a^2


O coeficiente não deveria ter o x. Logo, o correto seria:

B)x^2-a \sqrt[]{2x}-\frac{3}{2} a^2=0

a=1 ;    b= -a\sqrt[]{2}      ;     c= -\frac{3}{2}a^2

Verifica se agora dá certo.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: equações literais do 2°grau

Mensagempor stanley tiago » Dom Jan 23, 2011 17:24

ah entendi , obrigado :-D
até mais
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.