• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[expressões] problema

[expressões] problema

Mensagempor Cleyson007 » Ter Jul 01, 2008 01:43

Olá, Fábio, tudo bem?
Estudando um pouco de matemática, deparei-me com uma questão bem assim:
O valor da expressão \sqrt[3]{\frac{{2}^{28}+{2}^{30}}{10}} é?
Eu a resolvi da seguinte maneira:
\sqrt[3]{\frac{{2}^{0}+{{2}^{{i}^{2}}}^{}}{10}}\Rightarrow
\sqrt[3]{\frac{1-2}{10}}\Rightarrow
\sqrt[3]{\frac{-1}{10}}\Rightarrow
\frac{\sqrt[3]{-1}}{\sqrt[3]{10}}
Está correta a resolução do problema?
Desde já agradeço!
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: problema

Mensagempor admin » Ter Jul 01, 2008 07:10

Olá, Cleyson!

As primeiras perguntas que fiz para avaliar a expressão foram:
\frac{2^{28}+2^{30}}{10} =? \;\; \frac{2^0+{2^{i^2}}}{10}

Ou seja:
2^{28}+2^{30} =? \;\; 2^0+{2^{i^2}}

Ou ainda:
2^{28}+2^{30} =? \;\; 1+2^{-1}

2^{28}+2^{30} =? \;\; 1+\frac12

2^{28}+2^{30} =? \;\; \frac32

Pense nelas!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: problema

Mensagempor Cleyson007 » Ter Jul 01, 2008 11:27

Eu tentei resolvê-la por números complexos: 1) Onde {2}^{28}= {2}^{0} já que 28/4= 7 e resta zero (0). Todo número elevado a zero (0) = 1; ou seja: {2}^{0}=1
. Eu cometi um vacilo e coloquei -2 sendo que era {2}^{-1}
Então, ficaria assim o problema apresentado? \sqrt[3]{\frac{1+{2}^{-1}}{10}}\Rightarrow\sqrt[3]{\frac{\frac{3}{2}}{10}}\Rightarrow\sqrt[3]{\frac{3}{20}}}
O meu modo de resolver está correto? Ajude-me por favor!
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: problema

Mensagempor admin » Ter Jul 01, 2008 12:04

Bom dia!

Não Cleyson, não pode ser.
Você pensou nas perguntas?

Veja que este número é bem grande:
2^{28} = \underbrace{2 \cdot 2 \cdot 2 \cdot ... \cdot 2}_{\text{28 vezes}}
Ele não pode ser igual a um! Concorda?

Este outro é maior ainda!
2^{30} = \underbrace{2 \cdot 2 \cdot 2 \cdot ... \cdot 2}_{\text{30 vezes}}
Não pode ser igual a meio!


Cleyson007 escreveu:Eu tentei resolvê-la por números complexos: 1) Onde {2}^{28}= {2}^{0} já que 28/4= 7 e resta zero (0).

Cleyson, esta afirmação que você fez não é verdade.
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: problema

Mensagempor PIMENTA » Sáb Jul 05, 2008 21:41

Por não ter muita habilidade com a escrita gráfica em computador, formularei uma resposta por escrito, na forma gramatical, sem ater-me em gráficos.
o problema proposto é calcular a raiz cúbica de 2 elevado a 28 mais dois elevado a 30, dividido por 10. Aplicando o produto de uma potência por uma soma podemos reescrever a expressão na forma de raiz cúbica de 2 elevado ao quadrado vezes a soma de 2 elevado a 14 mais 2 elevado a 15, dividido por 10, já que 2x14=28 e 2x15=30, para 2 elevado a 15 podemos escrever 2 x 2 elevado a 14. Fatorando a expressão, teremos raiz cúbica de 2 elevado a 2 x 2 elevado a 14, fora do parênteses e 1 + 2 dentro do parênteses, daí fazendo as contas teremos como resultado final 32 vezes raiz cúbica de 3/5.
PIMENTA
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Jul 05, 2008 13:24
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: direito
Andamento: formado

Re: problema

Mensagempor admin » Dom Jul 06, 2008 11:14

Olá PIMENTA!

Sobre escrever as expressões matemáticas, você pode utilizar o botão "Editor de Fórmulas", enquanto se acostuma com a linguagem LaTeX.
Na janela que se abrirá, há botões para prever a expressão e inserir na mensagem.
Também, parando o ponteiro do mouse sobre o gráfico, a expressão utilizada é exibida.

Há um erro em sua primeira passagem:
No produto de potências de mesma base, devemos somar os expoentes, e não multiplicar. Assim como você fez nas demais passagens.

PIMENTA escreveu:
\sqrt[3]{\frac{{2}^{28}+{2}^{30}}{10}} =
\xcancel{ \sqrt[3]{\frac{ 2^2 \left({2}^{14}+{2}^{15} \right) }{10}} } =
\sqrt[3]{\frac{ 2^2 \left({2}^{14}+2\cdot{2}^{14} \right) }{10}} =
\sqrt[3]{\frac{ 2^2\cdot 2^{14} \left(1+2 \right) }{10}} =

= \sqrt[3]{\frac{ 2^{16} \cdot 3}{2\cdot 5}} =
\sqrt[3]{2^{15} \cdot \frac{3}{5}} =
2^{5}\cdot\sqrt[3]{\frac{3}{5}} =
32\cdot\sqrt[3]{\frac{3}{5}}


Veja que fazendo a distributiva, a expressão resultante é diferente da inicial:

\sqrt[3]{\frac{ 2^2 \left({2}^{14}+{2}^{15} \right) }{10}} =
\sqrt[3]{\frac{ {2}^{16}+{2}^{17} }{10}} \neq
\sqrt[3]{\frac{{2}^{28}+{2}^{30}}{10}}


Portanto,

\sqrt[3]{\frac{{2}^{28}+{2}^{30}}{10}}
\neq
32\cdot\sqrt[3]{\frac{3}{5}}
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: problema

Mensagempor admin » Dom Jul 06, 2008 18:11

Olá Cleyson!

Vou escrever as passagens em detalhes, por favor comente:

\sqrt[3]{\frac{2^{28}+2^{30}}{10}} = 
\sqrt[3]{\frac{2^{14+14}+2^{14+14+2}}{10}} = 
\sqrt[3]{\frac{2^{14}\cdot 2^{14}+2^{14}\cdot 2^{14}\cdot 2^2}{10}} = 
\sqrt[3]{\frac{2^{14}\cdot 2^{14}\left( 1 + 1\cdot 2^2 \right)}{10}} =

= \sqrt[3]{\frac{2^{14+14} \left( 1 + 4\right)}{2\cdot 5}} = 
\sqrt[3]{\frac{2^{28} \cdot 5}{2\cdot 5}} = 
\sqrt[3]{\frac{2^{28}}{2^1} \cdot \frac{5}{5}} =

= \sqrt[3]{2^{28-1} \cdot 1} = 
\sqrt[3]{2^{27}} = 
2^{\frac{27}{3}} =
2^9 = 512

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: problema

Mensagempor PIMENTA » Ter Jul 08, 2008 00:58

Olá Professor, realmente, houve um deslize por minha parte quando escrevi o produto de potências. Da próxima vez estarei mais atento quanto às propriedades operatórias das potências. Não sou formado em matemática, apesar ter iniciado o curso por duas vezes na Universidade Federal de Goiás - UFG, onde fiz apenas algumas matérias, tais como: Matemática I, maemática II, Probabilidade e Estatistica, Cálculo I, Geometria Plana, Geometria Analítica e Fundamentos da Física Clássica.
Hoje sou formado em direito, mas gosto muito de matemática. Perdoe-me as minhas intromissões indevidas.
PIMENTA
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Jul 05, 2008 13:24
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: direito
Andamento: formado

Re: problema

Mensagempor admin » Qui Jul 17, 2008 01:52

Olá Pimenta!
Seu pedido de perdão é desnecessário, todas as participações são bem-vindas.

Até mais.
Um abraço!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [expressões] problema

Mensagempor paulo testoni » Qua Out 01, 2008 16:23

Hola Cleyson007.

Aqui devemos usar as propriedades das potências, veja:

\sqrt[3]{\frac{{2}^{28}+{2}^{30}}{10}}

\sqrt[3]{\frac{{2}^{27}*{2}^1+{2}^{27}*{2}^3}{10}}, agora coloque 2^{27} em evidência dentro da raiz cúbica, assim:

\sqrt[3]{\frac{{2}^{27}*[{2}^1+{2}^3]}{10}},

\sqrt[3]{\frac{{2}^{27}*[2+8]}{10}},

\sqrt[3]{\frac{{2}^{27}*10}{10}}, corte o 10, fica:

\sqrt[3]{2^{27}}, divida 27 pelo índice da raiz, temos:

2^9 = 512. Creio que é isso.
paulo testoni
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 45
Registrado em: Ter Set 30, 2008 11:24
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 30 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D