Dados a e b inteiros, seja d=mdc(a,b) então existem r e s inteiros tais que ra+sb=d.Usando o algoritmo de Euclides estendido mostre que se p é primo e a e b são inteiros tais que p é divisor de ab, então p é divisor de a ou p é divisor de b.
Preciso de ajuda.
p é primo, então p é divisível por p e 1
a e b inteiros
p/ab, então p/a ou p/b

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)