• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBLEMA

PROBLEMA

Mensagempor JOHNY » Qui Set 02, 2010 18:31

QUATRO CORREDORES, JOAO, PEDRO, ANDRE E FABIO COMBINARAM QUE, AO FINAL DE CADA CORRIDA, O QUE FICASSE EM ULTIMO LUGAR DOBRARIA O DINHEIRO QUE CADA UM DOS OUTROS POSSUIA. COMPETIRAM 4 VEZES E FICARAM EM ULTIMO LUGAR NA PRIMEIRA, SEGUNDA, TERCEIRA E QUARTA CORRIDAS RESPECTIVAMENTE, JOAO, PEDRO, ANDRE E FABIO. SE NO FINAL DA QUARTA COMPETICAO, CADA UM FICOU COM 16 REAIS, ENTAO INICIALMENTE JOAO POSSUIA????
JOHNY
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Set 02, 2010 18:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: PROBLEMA

Mensagempor alexandre32100 » Sex Set 03, 2010 16:14

É só fazer o caminho inverso:
No final, todos tinha 16 reais e Fábio perdeu a última corrida. Quer dizer que, antes dela, João, Pedro e André tinham 8 reais cada e Fábio 16+3\times8=40 reais.
André perdeu a 3ª corrida. Antes dela, João e Pedro tinham 4 reais cada, Fábio tinha 20 reais e André 8+2\times4+20=36 reais, continuando o raciocínio, chegará ao resultado desejado...
alexandre32100
 


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}