• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questao resolvida

questao resolvida

Mensagempor adauto martins » Qui Mar 19, 2020 18:54

seja S={ (a,b,a*b,a+b),a,b\in K }
onde K é um corpo.mostre que:
S é um conjunto formado pelos elementos unidade"u"(multiplicativo) e elemento neutro "e"(soma).
qual seria a forma de S,se k for o corpo dos reais?
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1012
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: questao resolvida

Mensagempor adauto martins » Qui Mar 19, 2020 19:11

seja
x\in S
entao,x pode ser:
x=a...x=b...x=a*b...x=a+b
tomaremos x=a,logo

a=a*b\Rightarrow b=u

a=a+b\Rightarrow b=e

analogo p/x=b...
logo,pela intersecçao das sentenças teremos
a=a*b\Rightarrow b=u

a=a+b\Rightarrow b=e\Rightarrow

S={ (u,e,e,u) }
ou

S={ (e,u,e,u)

se K for o corpo dos reais,entao teriamos

S={(1,0,0,1) } ou S={( 0,1,0,1)}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1012
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: questao resolvida

Mensagempor adauto martins » Qui Abr 02, 2020 16:38

S é uma base para o espaço vetorial {\Re}^{2}

de fato,pois

vamos tomar S=(1,0,0,1)

seja

(x,y)\in{\Re}^{2}

podemos ter

(x,y)=x(1,0,0,0)+y(0,0,0,1)

como
(1,0,0,0),(0,0,0,1)\in S

logo
[(1,0,0,0),(0,0,0,1)]
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1012
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: questao resolvida

Mensagempor adauto martins » Dom Abr 05, 2020 11:10

uma correçao

(x,y)\in {\Re}^{2}

podemos ter

(x,y)=(x(1,0,0,0),y(0,0,0,1))

obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1012
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)