• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra

algebra

Mensagempor adauto martins » Dom Dez 29, 2019 18:13

uma algebra é definida por (S,+),onde S é um conjunto e "+" o operador soma dos elementos de S.
mostre que:
a)existe o operador multiplicativo " * ".
b)existe o elemento neutro da soma,e o elemento unidade do operador multiplicativo.
c)existe o elemento simetrico da soma e o elemento neutro multiplicativo.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1026
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: algebra

Mensagempor adauto martins » Dom Dez 29, 2019 18:50

a)
seja a\in S,entao pela definiçao da algebra,teremos:
a + a \in S
(a + a)+a \in S
.
.
.
(((a + a)+a)+a)...)+ a\in S
essa soma contada b vezes sera
(((a + a)+a)+a)...)+ a)=a*b\in S,logo
existe o operador " * ",dito multiplicativo em S.

b)

o elemento neutro da soma,tera que satisfazer a:
a+e=a

a*e=e

pela definiçao da algebra,teremos:
(((a + a)+a)+a)...)+ a)\in S,contado "e" vezes,e

a*e=(((a + a)+a)+a)...)+ a)=e

a+e=a+e*a=e\Rightarrow 

a+((((a + a)+a)+a)...)+ a)\in S,logo
existe "e\in S
racionio analogo,mostra-se que existe o elemento unidade do operdor multiplicativo
que deve satisfazer a condiçao
a*u=a(faça-o como exercicio)

c)

usando racionio analogo ao exposto acima termine-o!
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1026
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: algebra

Mensagempor adauto martins » Seg Dez 30, 2019 12:11

ps-desconsidere a demonstraçao da letra b),pois esta ficou imprecisa,indeterminada...vale para mostrar que sempre existe um elemento em S,cuja soma esta em S.mas nao precisou o elemento que em nosso caso é o elemento neutro da soma.geralmente nos livros de algebra,esses elementos entram como definiçao dada pelo autor.mas sao de suma importancia para o desenvolver da teroria,em especifico,teoria dos numeros.quando eu tiver a forma precisa de mostrar tais elementos,eu a posto,no mais,obrigado...adauto martins
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1026
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: algebra

Mensagempor adauto martins » Sex Jan 03, 2020 17:33

resolverei as letras b) e c) de forma muito elementar,mas concisa...

b)´

a+e=a
como a \in S\Rightarrow a+e \in S\Rightarrow e\in S

a*u=a
como a \in S\Rightarrow a*u \in S\Rightarrow u\in S

c)

a+b=e
como mostramos acima que existe o elemento neutro do operador soma "e",entao

e \in S\Rightarrow a+b \in S\Rightarrow b\in S
o inverso do operador multiplicativo fica como exercicio...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1026
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.