• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Notáveis

Produto Notáveis

Mensagempor Flavio Cacequi » Sex Mar 30, 2018 20:55

Sabe-se que x - 1/x =V5. Calcule o valor de x^6 - 1/x^6.
a)135V5
b)125V5
c)144V5
d)36V5
e)18V5
Flavio Cacequi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jun 06, 2017 17:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Produto Notáveis

Mensagempor Gebe » Sáb Mar 31, 2018 13:21

Flavio Cacequi escreveu:Sabe-se que x - 1/x =V5. Calcule o valor de x^6 - 1/x^6.
a)135V5
b)125V5
c)144V5
d)36V5
e)18V5


Bem, confesso que não consigui fazer essa questão do jeito mais apropriado (manipulando a expressão), mas como ninguem respondeu vou colocar a forma que eu utilizei pra chegar na resposta, letra c.
Antes, só por teimosia minha, não é um sinal de + ao inves do - na expressão x^6 - 1/x^6 ? Se fosse um + a questão seria bem mais simples.
Vamos então pra forma que eu utilizei.

1) Descobrir o valor de "x".
Multiplicando toda expressão ( x - 1/x = V5 ) por "x"
\\
x*(x-1/x)=x*\left(\sqrt[2]{5} \right)\\
\\
x^2-1=\sqrt[2]{5}x\\
\\
x^2-\sqrt[2]{5}x-1=0\\
\\

Resolvendo por Bhaskara
\\
x=\frac{\sqrt[2]{5}\pm\sqrt[2]{\left(\sqrt[2]{5} \right)^2-4*1*-1}}{2*1}\\
\\
x=\frac{\sqrt[2]{5}\pm\sqrt[2]{5+4}}{2}\\
\\
x=\frac{\sqrt[2]{5}\pm\sqrt[2]{9}}{2}\\
\\
x=\frac{\sqrt[2]{5}\pm3}{2}

Agora que vem a parte menos elegante da resolução. Escolhendo uma das raizes (pode ser qlq uma das duas, so muda o sinal no final), vamos achar a expressão pedida no braço. Como as raizes achadas estão separadas em dois termos devido a presença da raiz quadrada a conta fica muito extensa, logo vamos achar uma aproximação para \sqrt[2]{5}.

Por tentativa não é dificil achar que \sqrt[2]{5} é aproximadamente 2.23, logo x=\frac{2.23+3}{2}=2.62.
Agora achamos a expressão de x^6-\frac{1}{x^6}

x^6-\frac{1}{x^6}=2.62^6-\frac{1}{2.62^6}\approx323
Esse é o resultado utilizando a aproximação que fizemos, no entanto a questão da as respostas em termos de \sqrt[2]{5}.
Pra resolver esse problema, basta dividirmos a resposta encontrada por \sqrt[2]{5}\approx2.23

323=323*\frac{\sqrt[2]{5}}{2.23}=\frac{323}{2.23}*\sqrt[2]{5}\approx144.84\sqrt[2]{5}

Espero que tenha ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 134
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: