• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Notáveis

Produto Notáveis

Mensagempor Flavio Cacequi » Sex Mar 30, 2018 20:55

Sabe-se que x - 1/x =V5. Calcule o valor de x^6 - 1/x^6.
a)135V5
b)125V5
c)144V5
d)36V5
e)18V5
Flavio Cacequi
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Jun 06, 2017 17:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Produto Notáveis

Mensagempor Gebe » Sáb Mar 31, 2018 13:21

Flavio Cacequi escreveu:Sabe-se que x - 1/x =V5. Calcule o valor de x^6 - 1/x^6.
a)135V5
b)125V5
c)144V5
d)36V5
e)18V5


Bem, confesso que não consigui fazer essa questão do jeito mais apropriado (manipulando a expressão), mas como ninguem respondeu vou colocar a forma que eu utilizei pra chegar na resposta, letra c.
Antes, só por teimosia minha, não é um sinal de + ao inves do - na expressão x^6 - 1/x^6 ? Se fosse um + a questão seria bem mais simples.
Vamos então pra forma que eu utilizei.

1) Descobrir o valor de "x".
Multiplicando toda expressão ( x - 1/x = V5 ) por "x"
\\
x*(x-1/x)=x*\left(\sqrt[2]{5} \right)\\
\\
x^2-1=\sqrt[2]{5}x\\
\\
x^2-\sqrt[2]{5}x-1=0\\
\\

Resolvendo por Bhaskara
\\
x=\frac{\sqrt[2]{5}\pm\sqrt[2]{\left(\sqrt[2]{5} \right)^2-4*1*-1}}{2*1}\\
\\
x=\frac{\sqrt[2]{5}\pm\sqrt[2]{5+4}}{2}\\
\\
x=\frac{\sqrt[2]{5}\pm\sqrt[2]{9}}{2}\\
\\
x=\frac{\sqrt[2]{5}\pm3}{2}

Agora que vem a parte menos elegante da resolução. Escolhendo uma das raizes (pode ser qlq uma das duas, so muda o sinal no final), vamos achar a expressão pedida no braço. Como as raizes achadas estão separadas em dois termos devido a presença da raiz quadrada a conta fica muito extensa, logo vamos achar uma aproximação para \sqrt[2]{5}.

Por tentativa não é dificil achar que \sqrt[2]{5} é aproximadamente 2.23, logo x=\frac{2.23+3}{2}=2.62.
Agora achamos a expressão de x^6-\frac{1}{x^6}

x^6-\frac{1}{x^6}=2.62^6-\frac{1}{2.62^6}\approx323
Esse é o resultado utilizando a aproximação que fizemos, no entanto a questão da as respostas em termos de \sqrt[2]{5}.
Pra resolver esse problema, basta dividirmos a resposta encontrada por \sqrt[2]{5}\approx2.23

323=323*\frac{\sqrt[2]{5}}{2.23}=\frac{323}{2.23}*\sqrt[2]{5}\approx144.84\sqrt[2]{5}

Espero que tenha ajudado, bons estudos.
Gebe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D