• Anúncio Global
    Respostas
    Exibições
    Última mensagem

resolução de questões de matemática

resolução de questões de matemática

Mensagempor mauro arkader » Seg Abr 07, 2008 00:21

Caro professor: boa noite
tenho tido dificuldade com o estudo de minha filha e não tenho habilidade em matemática e muito menos práTICA NA ÁREA, PODERIA OBTER A AJUDA DE VCS NO SENTIDO DE RESOLVER ALGUMAS QUESTÕES DE EXERCÍCIOS DE MINHA FILHA? MUITO GRATO D ESDE JÁ...
SEGUEM AS QUESTÕES!

Em uma barraca de caldo de cana, são vendidos 2 tamanhos de copos, um de 250 ml e outro de 500 ml. O preço do copo pequeno é R$ 1,00, e o do médio, R$ 1,50. Se comprei, no total, 2 litros de caldo de cana e paguei R$ 6,50, quantos copos pequenos e quantos copos médios comprei?

OUTRA:uMA CIRCUNFERÊNCIA TEM CUMPRIMENTO IGUAL A 20 PI cm. Qual o perímetro de um decágono regular com lado igual ao raio desta circunferência?

outra:Se há 5 anos a soma das idades de Ricardo e Renato era 40 anos, qual é a soma das idades de Ricardo e Renato hoje?

outra:Somando dois números pares consecutivos, obtemos 138. Sabendo disso, quanto vale o produto entre eles?

última:Uma padaria fabrica dois tipos de pão. Dois terços dos clientes preferem pães sem gergelim, e o restante, com gergelim. Depois de uma campanha de degustação, ¼ dos compradores que preferiam pães sem gergelim passaram a comprar do outro tipo de pão. Qual a fração dos compradores que prefere, agora, pães com gergelim? O resultado deve ser uma fração irredutível.

agradeço mdesde já.. boa sorte! deus os acompanhe...
abraços Mauro Arkader
mauro arkader
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 06, 2008 01:24
Área/Curso: Estudante
Andamento: cursando

Re: resolução de questões de matemática

Mensagempor admin » Seg Abr 07, 2008 12:28

Olá.
A resoluções serão enviadas em seguida, mas devo esclarecer o seguinte:
Atualmente não resolvemos listas de exercícios.
Mesmo que seja apenas um exercício, pedimos para que não seja enviado o enunciado somente, pois queremos interagir com as tentativas de resolução dos participantes, entender as dificuldades e dar dicas com o intuito de esclarecer algumas dúvidas para que a resolução seja alcançada pelo(a) estudante.
Também porque, até o momento, infelizmente não temos outros colaboradores ativos nas ajudas.
Este é um trabalho voluntário e assim acreditamos que haverá uma real Ajuda Matemática.
Caso não seja possível a participação direta de sua filha no fórum, tente compartilhar suas tentativas e dúvidas e tentaremos aos poucos ajudar.


Em uma barraca de caldo de cana, são vendidos 2 tamanhos de copos, um de 250 ml e outro de 500 ml. O preço do copo pequeno é R$ 1,00, e o do médio, R$ 1,50. Se comprei, no total, 2 litros de caldo de cana e paguei R$ 6,50, quantos copos pequenos e quantos copos médios comprei?


O enunciado fornece dados para representarmos um sistema com duas equações e duas incógnitas.
Nomeando as variáveis:
p: quantidade comprada de copos pequenos
m: quantidade comprada de copos médios

\left\{
\begin{matrix}
   250p + 500m = 2000 \\ 
   1p + 1,5m = 6,5
\end{matrix}
\right.

Da segunda equação, obtemos:
p = 6,5 - 1,5m

Substituindo p na primeira equação:
250(6,5 - 1,5m) + 500m = 2000

Simplificando, dividindo os dois membros por 250:
6,5 - 1,5m + 2m = 8

2m - 1,5m = 8 - 6,5

0,5m = 1,5

m = \frac{1,5}{0,5}

m = 3 unidades de copos médios


Substituindo m obtido na segunda equação, por exemplo:
p + 1,5\cdot 3 = 6,5

p = 6,5 - 4,5

p = 2 unidades de copos pequenos




OUTRA:uMA CIRCUNFERÊNCIA TEM CUMPRIMENTO IGUAL A 20 PI cm. Qual o perímetro de um decágono regular com lado igual ao raio desta circunferência?


Com a informação de que uma circunferência tem comprimento C igual a 20\pi cm, podemos descobrir o raio r, pois:
C = 2\pi r

20\pi = 2\pi r

Dividindo os dois membros da equação por 2 \pi:
r = 10 cm

Um decágono regular possui 10 lados de mesma medida. E o perímetro P é a soma das medidas dos lados, então:
P = 10\cdot r

P = 10\cdot 10

P = 100 cm



outra:Se há 5 anos a soma das idades de Ricardo e Renato era 40 anos, qual é a soma das idades de Ricardo e Renato hoje?

Apenas precisamos representar a soma das idades no passado.

x: idade atual de Ricardo
y: idade atual de Renato

Soma das idades no passado:
(x-5)+(y-5) = 40

Calculando x+y que é a soma no presente:
x-5+y-5 = 40

x+y-5-5 = 40

x+y = 40 + 5 + 5

x+y = 50




outra:Somando dois números pares consecutivos, obtemos 138. Sabendo disso, quanto vale o produto entre eles?

Um número par é um número da forma 2n, onde n é um natural não nulo (1, 2, 3, ...).

Então, a soma dos dois números pares consecutivos é:
2n + 2(n+1) = 138

Agora, podemos calcular n:

2n + 2n + 2 = 138

4n = 138-2

n = \frac{136}{4}

n = 34

Logo, os números são:
2n = 2\cdot 34 = 68

2(n+1) = 2\cdot 35 = 70


O produto pedido:
68 \cdot 70 = 4760



última:Uma padaria fabrica dois tipos de pão. Dois terços dos clientes preferem pães sem gergelim, e o restante, com gergelim. Depois de uma campanha de degustação, ¼ dos compradores que preferiam pães sem gergelim passaram a comprar do outro tipo de pão. Qual a fração dos compradores que prefere, agora, pães com gergelim? O resultado deve ser uma fração irredutível.


Como são apenas dois tipos de pão, se \frac23 dos clientes preferem pães sem gergelim, o restante citado equivale a \frac13 dos clientes (aqueles que preferem pães com gergelim antes da campanha), pois a soma das frações precisa ser 1 (todos os clientes).

Então, já sabemos que antes da campanha, os que preferem pães com gergelim representam \frac13 dos clientes.

À esta fração, após a campanha, devemos somar \frac14 de \frac23.

Fração de clientes que atualmente preferem pães com gergelim:

\frac13 + \frac14 \cdot \frac23 = \frac13 + \frac{2}{12} = \frac13 + \frac16 = \frac{2+1}{6} = \frac36 = \frac12

Ou seja, após a campanha, a preferência por pães com gergelim subiu de \frac13 para a metade dos clientes.




Mauro, espero ter ajudado e agradeço sua compreensão!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 886
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: resolução de questões de matemática

Mensagempor lukas » Qua Jul 29, 2009 10:38

caro professor,
estou estudando e revisando o básico do meu primeiro ano do ensino médio porém surgiu duas questões que nem eu nem meu irmão(terceiro ano do ensino médio) conseguimos resolver lá vai as questões e o que tentamos:

1ª: Que expressão é maior: \left(\sqrt[2]{2+\sqrt[2]{3}}\right)\prime2 ou \left(\sqrt[2]{6}+\sqrt[2]{3}\right)\prime4 ?

Obs.: R:as duas são iguais
nós não conseguimos achar um meio de igualar as duas e nem de resolvê-las

2ª: Mostre que o número x = \sqrt[2]{7+4\sqrt[2]{3}}+\sqrt[2]{7-4\sqrt[2]{3}} é racional(sugestão calcule x^2)

Obs.: R: não havia resposta escrita no livro

x^2 = {\left(\sqrt[2]{7+4\sqrt[2]{3}} \right)}^{2}+{\left(\sqrt[2]{7-4\sqrt[2]{3}} \right)}^{2}
x^2 = 7+4\sqrt[2]{3}+7-4\sqrt[2]{3}
x^2 = 14
x = \sqrt[2]{14}

porém raíz de 14 não é racional, isso é uma resposta válida?
lukas
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jul 29, 2009 10:06
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D