• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Desigualdade] entre função exponencial e função potência

[Desigualdade] entre função exponencial e função potência

Mensagempor VitorFN » Sex Mai 26, 2017 15:18

Tenho uma questão que está me intrigando, se alguém puder me ajudar:

Prove que uma função exponencial de base natural cresce mais rápido que qualquer função potência, desde que X seja suficientemente grande.

Ou seja, prove que e^{x} > x^{N} para qualquer n\in \mathbb{N} - Por exemplo, para n=10 temos: e^{x} > x^{10}
Utilizando o programa WolframAlpha para resolver essa condição(n=10), ele mostra que x precisa ser maior que aproximadamente 35,77, mas como resolver para qualquer n apenas utilizando operações algébricas?

Eu pensei em aplicar o logaritmo natural em ambos os lados, chegando à seguinte expressão: \frac{x}{\ln(x)} > n a partir daí não sei como proceder.
VitorFN
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Mai 26, 2017 15:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Desigualdade] entre função exponencial e função potênci

Mensagempor adauto martins » Sex Jul 07, 2017 12:17

O({x}^{n})=O({x}^{n}+{x}^{n-1}+...+x+1)\prec O({x}^{n}.{x}^{n-1}....1)\prec O({n}^{x}),
onde O(f(x)) mede o crescimento assimtotico de f(x) para numeros muito grande,O e dita notaçao de landau...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.