• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação de fração

Simplificação de fração

Mensagempor fabianoasantos » Sáb Out 08, 2016 19:27

Esse é um problema de limite mas, a questão real é dificuldade em álgebra:
limite qnd x tende a 0 de \frac{\frac{1}{x+4}-\frac{1}{4}}{x}
o resultado é -1/6. alguém pode me ajudar com o passo a passo?
fabianoasantos
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Out 08, 2016 19:12
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico em mecâica
Andamento: formado

Re: Simplificação de fração

Mensagempor Napiresilva » Sáb Out 15, 2016 22:44

Imagem
Napiresilva
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Out 10, 2016 15:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Produção Civil
Andamento: cursando

Re: Simplificação de fração

Mensagempor fabianoasantos » Sáb Out 15, 2016 23:18

Napiresilva escreveu:Imagem


não consigo ver a imagem!!!
fabianoasantos
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Out 08, 2016 19:12
Formação Escolar: ENSINO MÉDIO
Área/Curso: técnico em mecâica
Andamento: formado

Re: Simplificação de fração

Mensagempor Napiresilva » Dom Out 16, 2016 00:01

Vê se agora deu
Anexos
DSC_0016.JPG
Napiresilva
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Out 10, 2016 15:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Produção Civil
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.