• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[fração algébrica] fatoração

[fração algébrica] fatoração

Mensagempor Ederson_ederson » Sáb Jun 27, 2015 20:15

Boa noite.

Tentei fazer esse exercício e achei que estava indo bem, mas no fim errei a alternativa. A parti de onde está errado?

Se a diferente de zero, então(\frac{a}{a+y}+\frac{y}{a-y}):(\frac{y}{a+y}-\frac{a}{a-y}) = -1

eu primeiro fiz o mmc e resolvi a soma do primeiro parênteses e a subtração do segundo:

\frac{a(a-y)+y(a+y)}{(a+y)(a-y)}:\frac{y(a-y)-a(a+y)}{(a+y)(a-y)}

Cortei os "de baixo" porque são iguais e obtive:

\frac{a(a-y)+y(a+y)}{y(a-y)-a(a+y)}=-1

Desenvolvi as distributivas:

\frac{a^2-ay+ay+y^2}{ay-y^2-a^2-ay}=-1

a^2+y^2 = -1(-y^2-a^2)

a^2+y^2=y^2+a^2

As alternativas são:
a)para todos, exceto dois valores de y
b) só para dois valores de y
c) para todos os valores de y
d) para nenhum valor de y

E como deu tudo igual eu coloquei a alternativa C, mas a certa é a A. Por que? Onde eu errei?

Obrigado!!!
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor DanielFerreira » Sáb Jun 27, 2015 21:00

Ederson_ederson escreveu:Boa noite.

Tentei fazer esse exercício e achei que estava indo bem, mas no fim errei a alternativa. A parti de onde está errado?

Se a diferente de zero, então(\frac{a}{a+y}+\frac{y}{a-y}):(\frac{y}{a+y}-\frac{a}{a-y}) = -1

eu primeiro fiz o mmc e resolvi a soma do primeiro parênteses e a subtração do segundo:

\frac{a(a-y)+y(a+y)}{(a+y)(a-y)}:\frac{y(a-y)-a(a+y)}{(a+y)(a-y)}

Cortei os "de baixo" porque são iguais e obtive:

\frac{a(a-y)+y(a+y)}{y(a-y)-a(a+y)}=-1

Desenvolvi as distributivas:

\frac{a^2-ay+ay+y^2}{ay-y^2-a^2-ay}=-1

a^2+y^2 = -1(-y^2-a^2)

a^2+y^2=y^2+a^2

As alternativas são:
a)para todos, exceto dois valores de y
b) só para dois valores de y
c) para todos os valores de y
d) para nenhum valor de y

E como deu tudo igual eu coloquei a alternativa C, mas a certa é a A. Por que? Onde eu errei?

Obrigado!!!


Não diria que cometera um erro, mas sim que deixara de observar o seguinte: \boxed{y \neq \pm a}!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1636
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor Ederson_ederson » Dom Jun 28, 2015 23:34

Olá danjr5.

Não entendi... porque y é diferente de mais ou menos a?

É para que eles não se anulem e portanto dê -1, já que desenvolvendo vimos que dá certo?

Mais uma vez obrigado pelo ajuda!!!
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor DanielFerreira » Ter Jul 07, 2015 21:44

De fato, desenvolvendo dá certo; mas não deves desconsiderar o fato de + a e - a tornar a equação INICIAL impossível, veja,

Quando y = + a:

\\ ( \frac{a}{a + y} + \frac{y}{a - y}) \div (\frac{y}{a + y} - \frac{a}{a - y}) = - 1 \\\\\\ (\frac{a}{a + a} + \frac{y}{a - a}) \div (\frac{y}{a + a} - \frac{a}{a - a}) = - 1 \\\\\\ (\frac{a}{2a} + \frac{a}{0}) \div (\frac{a}{2a} - \frac{a}{0}) = - 1

Como podes notar, \frac{a}{0} é impossível!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1636
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor Ederson_ederson » Qua Jul 08, 2015 11:27

Ahh... Tá certo... Entendi.

Mais uma vez obrigado :)
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}