• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[fração algébrica] fatoração

[fração algébrica] fatoração

Mensagempor Ederson_ederson » Sáb Jun 27, 2015 20:15

Boa noite.

Tentei fazer esse exercício e achei que estava indo bem, mas no fim errei a alternativa. A parti de onde está errado?

Se a diferente de zero, então(\frac{a}{a+y}+\frac{y}{a-y}):(\frac{y}{a+y}-\frac{a}{a-y}) = -1

eu primeiro fiz o mmc e resolvi a soma do primeiro parênteses e a subtração do segundo:

\frac{a(a-y)+y(a+y)}{(a+y)(a-y)}:\frac{y(a-y)-a(a+y)}{(a+y)(a-y)}

Cortei os "de baixo" porque são iguais e obtive:

\frac{a(a-y)+y(a+y)}{y(a-y)-a(a+y)}=-1

Desenvolvi as distributivas:

\frac{a^2-ay+ay+y^2}{ay-y^2-a^2-ay}=-1

a^2+y^2 = -1(-y^2-a^2)

a^2+y^2=y^2+a^2

As alternativas são:
a)para todos, exceto dois valores de y
b) só para dois valores de y
c) para todos os valores de y
d) para nenhum valor de y

E como deu tudo igual eu coloquei a alternativa C, mas a certa é a A. Por que? Onde eu errei?

Obrigado!!!
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor DanielFerreira » Sáb Jun 27, 2015 21:00

Ederson_ederson escreveu:Boa noite.

Tentei fazer esse exercício e achei que estava indo bem, mas no fim errei a alternativa. A parti de onde está errado?

Se a diferente de zero, então(\frac{a}{a+y}+\frac{y}{a-y}):(\frac{y}{a+y}-\frac{a}{a-y}) = -1

eu primeiro fiz o mmc e resolvi a soma do primeiro parênteses e a subtração do segundo:

\frac{a(a-y)+y(a+y)}{(a+y)(a-y)}:\frac{y(a-y)-a(a+y)}{(a+y)(a-y)}

Cortei os "de baixo" porque são iguais e obtive:

\frac{a(a-y)+y(a+y)}{y(a-y)-a(a+y)}=-1

Desenvolvi as distributivas:

\frac{a^2-ay+ay+y^2}{ay-y^2-a^2-ay}=-1

a^2+y^2 = -1(-y^2-a^2)

a^2+y^2=y^2+a^2

As alternativas são:
a)para todos, exceto dois valores de y
b) só para dois valores de y
c) para todos os valores de y
d) para nenhum valor de y

E como deu tudo igual eu coloquei a alternativa C, mas a certa é a A. Por que? Onde eu errei?

Obrigado!!!


Não diria que cometera um erro, mas sim que deixara de observar o seguinte: \boxed{y \neq \pm a}!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1630
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor Ederson_ederson » Dom Jun 28, 2015 23:34

Olá danjr5.

Não entendi... porque y é diferente de mais ou menos a?

É para que eles não se anulem e portanto dê -1, já que desenvolvendo vimos que dá certo?

Mais uma vez obrigado pelo ajuda!!!
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor DanielFerreira » Ter Jul 07, 2015 21:44

De fato, desenvolvendo dá certo; mas não deves desconsiderar o fato de + a e - a tornar a equação INICIAL impossível, veja,

Quando y = + a:

\\ ( \frac{a}{a + y} + \frac{y}{a - y}) \div (\frac{y}{a + y} - \frac{a}{a - y}) = - 1 \\\\\\ (\frac{a}{a + a} + \frac{y}{a - a}) \div (\frac{y}{a + a} - \frac{a}{a - a}) = - 1 \\\\\\ (\frac{a}{2a} + \frac{a}{0}) \div (\frac{a}{2a} - \frac{a}{0}) = - 1

Como podes notar, \frac{a}{0} é impossível!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1630
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor Ederson_ederson » Qua Jul 08, 2015 11:27

Ahh... Tá certo... Entendi.

Mais uma vez obrigado :)
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59