• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[fração algébrica] fatoração

[fração algébrica] fatoração

Mensagempor Ederson_ederson » Sáb Jun 27, 2015 20:15

Boa noite.

Tentei fazer esse exercício e achei que estava indo bem, mas no fim errei a alternativa. A parti de onde está errado?

Se a diferente de zero, então(\frac{a}{a+y}+\frac{y}{a-y}):(\frac{y}{a+y}-\frac{a}{a-y}) = -1

eu primeiro fiz o mmc e resolvi a soma do primeiro parênteses e a subtração do segundo:

\frac{a(a-y)+y(a+y)}{(a+y)(a-y)}:\frac{y(a-y)-a(a+y)}{(a+y)(a-y)}

Cortei os "de baixo" porque são iguais e obtive:

\frac{a(a-y)+y(a+y)}{y(a-y)-a(a+y)}=-1

Desenvolvi as distributivas:

\frac{a^2-ay+ay+y^2}{ay-y^2-a^2-ay}=-1

a^2+y^2 = -1(-y^2-a^2)

a^2+y^2=y^2+a^2

As alternativas são:
a)para todos, exceto dois valores de y
b) só para dois valores de y
c) para todos os valores de y
d) para nenhum valor de y

E como deu tudo igual eu coloquei a alternativa C, mas a certa é a A. Por que? Onde eu errei?

Obrigado!!!
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor DanielFerreira » Sáb Jun 27, 2015 21:00

Ederson_ederson escreveu:Boa noite.

Tentei fazer esse exercício e achei que estava indo bem, mas no fim errei a alternativa. A parti de onde está errado?

Se a diferente de zero, então(\frac{a}{a+y}+\frac{y}{a-y}):(\frac{y}{a+y}-\frac{a}{a-y}) = -1

eu primeiro fiz o mmc e resolvi a soma do primeiro parênteses e a subtração do segundo:

\frac{a(a-y)+y(a+y)}{(a+y)(a-y)}:\frac{y(a-y)-a(a+y)}{(a+y)(a-y)}

Cortei os "de baixo" porque são iguais e obtive:

\frac{a(a-y)+y(a+y)}{y(a-y)-a(a+y)}=-1

Desenvolvi as distributivas:

\frac{a^2-ay+ay+y^2}{ay-y^2-a^2-ay}=-1

a^2+y^2 = -1(-y^2-a^2)

a^2+y^2=y^2+a^2

As alternativas são:
a)para todos, exceto dois valores de y
b) só para dois valores de y
c) para todos os valores de y
d) para nenhum valor de y

E como deu tudo igual eu coloquei a alternativa C, mas a certa é a A. Por que? Onde eu errei?

Obrigado!!!


Não diria que cometera um erro, mas sim que deixara de observar o seguinte: \boxed{y \neq \pm a}!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor Ederson_ederson » Dom Jun 28, 2015 23:34

Olá danjr5.

Não entendi... porque y é diferente de mais ou menos a?

É para que eles não se anulem e portanto dê -1, já que desenvolvendo vimos que dá certo?

Mais uma vez obrigado pelo ajuda!!!
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor DanielFerreira » Ter Jul 07, 2015 21:44

De fato, desenvolvendo dá certo; mas não deves desconsiderar o fato de + a e - a tornar a equação INICIAL impossível, veja,

Quando y = + a:

\\ ( \frac{a}{a + y} + \frac{y}{a - y}) \div (\frac{y}{a + y} - \frac{a}{a - y}) = - 1 \\\\\\ (\frac{a}{a + a} + \frac{y}{a - a}) \div (\frac{y}{a + a} - \frac{a}{a - a}) = - 1 \\\\\\ (\frac{a}{2a} + \frac{a}{0}) \div (\frac{a}{2a} - \frac{a}{0}) = - 1

Como podes notar, \frac{a}{0} é impossível!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fração algébrica] fatoração

Mensagempor Ederson_ederson » Qua Jul 08, 2015 11:27

Ahh... Tá certo... Entendi.

Mais uma vez obrigado :)
Ederson_ederson
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Ter Jun 23, 2015 19:04
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.


cron