• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Potenciação] raiz de número negativo,sendo tudo ao quadrado

[Potenciação] raiz de número negativo,sendo tudo ao quadrado

Mensagempor Debora Bruna » Sex Jun 26, 2015 23:02

Minha vida foi sempre movida na frase de Sócrates "Só sei que nada sei", quanto mais eu estudo mais percebo que não sei de nada. :-P
Seguinte, sempre resolvi questões horrendas, mas hoje inventei tirar à prova do que estou fazendo e me confundi toda.
Problemas como esse, resolvia assim: (√-3)^2 = (corta o expoente com a raiz) = -3.
Mas sei que um número elevado a n é esse número multiplicado n vezes: (√-3)^2 = (√-3).(√-3)= (√-3.-3) = √9 = 3. Viram? Deu 3 positivo. Assim eu lhes pergunto, onde foi que eu errei?
Debora Bruna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Dez 15, 2014 17:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Potenciação] raiz de número negativo,sendo tudo ao quad

Mensagempor DanielFerreira » Sáb Jun 27, 2015 14:30

Olá Débora, boa tarde!

Sua dúvida está relacionada ao estudo do módulo.

Supomos que queiramos encontrar a raiz quadrada de k^2, isto é \sqrt{k^2}. Veja o que acontece...

Resolução:

\\ \sqrt{k^2} = |k| \\\\ |k| = \begin{cases}k \;\; \text{se} \;\; k \geq 0 \\ - k \;\; \text{se} \;\; k < 0 \end{cases}


Outro exemplo:

\\ (\sqrt{- 4})^2= \\\\ \sqrt{(- 4)^2} = \\\\ \sqrt{16} = \\\\ |4| =

Uma vez que 4 \geq 0, temos que \boxed{|4| = + 4}

Vale ressaltar que não existe raiz quadrada de números negativos, em \mathbb{R}, por isso não podemos cortar a raiz com o expoente!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1678
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [Potenciação] raiz de número negativo,sendo tudo ao quad

Mensagempor Debora Bruna » Dom Jun 28, 2015 15:10

Muitíssimo obrigada danjr5 :y: , esse negócio de corta corta de alguns professores nunca dá certo não é msm?, mas enfim, nunca mais errarei!
Debora Bruna
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Seg Dez 15, 2014 17:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Potenciação] raiz de número negativo,sendo tudo ao quad

Mensagempor DanielFerreira » Dom Jun 28, 2015 16:01

Não há de quê e volte sempre!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1678
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}