• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Fatoração de elementos em raiz cúbica]

[Fatoração de elementos em raiz cúbica]

Mensagempor Zeh Edu » Qua Abr 29, 2015 08:40

Galera, preciso fatorar a seguinte expressão e não sei por onde começar

( (y+h)^(1/3) - y^(1/3) )/h

Desde já, muito obrigado pela ajuda :-D
Zeh Edu
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mai 08, 2012 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando para engenharia
Andamento: cursando

Re: [Fatoração de elementos em raiz cúbica]

Mensagempor young_jedi » Qua Abr 29, 2015 19:50

Zeh Edu

você esta precisando fatorar, ou simplificar o numerador e denominador para realizar uma calculo de limite ?
se for isto, pode utilizar o seguinte simplificação

\frac{(y+h)^{\frac{1}{3}}-y^{\frac{1}{3}}}{h}

\frac{(y+h)^{\frac{1}{3}}-y^{\frac{1}{3}}}{h}.\left(\frac{(y+h)^{\frac{2}{3}}+(y+h)^{\frac{1}{3}}y^{\frac{1}{3}}+y^{\frac{2}{3}}}{(y+h)^{\frac{2}{3}}+(y+h)^{\frac{1}{3}}y^{\frac{1}{3}}+y^{\frac{2}{3}}}\right)

=\frac{y+h+(y+h)^{\frac{2}{3}}y^{\frac{1}{3}}-(y+h)^{\frac{2}{3}}y^{\frac{1}{3}}-(y+h)^{\frac{1}{3}}y^{\frac{2}{3}}+(y+h)^{\frac{1}{3}}y^{\frac{2}{3}}-y}{h.\left((y+h)^{\frac{2}{3}}+(y+h)^{\frac{1}{3}}y^{\frac{1}{3}}+y^{\frac{2}{3}}\right)}

=\frac{y+h-y}{h.\left((y+h)^{\frac{2}{3}}+(y+h)^{\frac{1}{3}}y^{\frac{1}{3}}+y^{\frac{2}{3}}\right)}

=\frac{h}{h.\left((y+h)^{\frac{2}{3}}+(y+h)^{\frac{1}{3}}y^{\frac{1}{3}}+y^{\frac{2}{3}}\right)}

=\frac{1}{\left((y+h)^{\frac{2}{3}}+(y+h)^{\frac{1}{3}}y^{\frac{1}{3}}+y^{\frac{2}{3}}\right)}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Fatoração de elementos em raiz cúbica]

Mensagempor Zeh Edu » Qui Abr 30, 2015 00:31

Young Jedi, é isso mesmo. Preciso calcular o limite daquela expressão quando h tende a zero. Mas fiquei perdido quando vi a diferença de elementos com raiz cúbica. Nesses casos fica mais fácil deixar elevado à fração ?

O raciocínio que você usou tem a ver com triângulo de pascal ? Ou então é parecido com a fatoração de uma soma ou diferença elevado a um n.

(a+b)^n = (a+b)*( a^(n-1)*b^0 + a^(n-2)*b^1 + ... + a^0*b^(n-1) )

(a+b)^5 = (a+b)(a^4 + a^3*b + a^2*b^2 + a*b^3 + b^4)

quando se tem (a+b) elevado a uma fração não entendi muito bem como se fatora. Existe algum material com o qual eu possa estudar isso com mais profundidade ?

Obrigado Young Jedi, e que a força esteja com vc :-D
Zeh Edu
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mai 08, 2012 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando para engenharia
Andamento: cursando

Re: [Fatoração de elementos em raiz cúbica]

Mensagempor young_jedi » Qui Abr 30, 2015 21:27

Então Zeh Edu

eu utilizei a seguinte igualdade

(a^n-b^n)=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+\dots+a^{2}b^{n-3}+a.b^{n-2}+b^{n-1})

neste nosso caso

n=3

a=(y+h)^{\frac{1}{3}}

e

b=y^{\frac{1}{3}}

o objetivo aqui era "tirar" aquele expoente 1/3 para poder simplificar por isso o n escolhido foi 3

no resultado final aparecem elemento com expoente contendo raiz cubica, mas isso não tem problema na hora de calcular o limite, pois o importante era simplificar o h do denominador com o do numerador

como material eu recomento so livro do Stewart que acho muito bom

e esses dois site são bons também

http://ecalculo.if.usp.br/index.htm

http://pessoal.sercomtel.com.br/matematica/superior/superior.htm

e este video do youtube explica bem essa parte que eu mostrei

https://www.youtube.com/watch?v=taF5XZfgYBc
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Fatoração de elementos em raiz cúbica]

Mensagempor Zeh Edu » Qui Abr 30, 2015 23:35

Entendi Jedi, valeu pela ajuda!! :-D
Zeh Edu
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Mai 08, 2012 01:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando para engenharia
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}