• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra Elementar

Álgebra Elementar

Mensagempor Thiago Josep » Sex Set 05, 2014 15:32

M = \frac{x²}{y²} - \frac{y²}{x²}
\div
\frac{1}{x²} + \frac{2}{xy} + \frac{1}{y²}

Bem, eu sou um iniciante em matemática e gostaria de uma ajuda neste exercício da UFMG e eu não sei realmente nem como iniciá-la e então desenvolvê-la. Alguém poderia me mostrar passo a passo como, por favor?
Thiago Josep
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Set 03, 2014 17:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Álgebra Elementar

Mensagempor DanielFerreira » Qui Jan 01, 2015 22:22

\\ M = (\frac{x^2}{y^2} - \frac{y^2}{x^2}) \div (\frac{1}{x^2} + \frac{2}{xy} + \frac{1}{y^2}) \\\\\\ M = \frac{\frac{x^2}{y^2} - \frac{y^2}{x^2}}{\frac{1}{x^2} + \frac{2}{xy} + \frac{1}{y^2}} \\\\\\ M = \frac{(\frac{x}{y} + \frac{y}{x})(\frac{x}{y} - \frac{y}{x})}{(\frac{1}{x} + \frac{1}{y})^2} \\\\\\ M = \frac{\cancel{(\frac{x}{y} + \frac{y}{x})}(\frac{x}{y} - \frac{y}{x})}{\cancel{(\frac{1}{x} + \frac{1}{y})}(\frac{1}{x} + \frac{1}{y})} \\\\\\ \boxed{M = \frac{\frac{x}{y} - \frac{y}{x}}{\frac{1}{x} + \frac{1}{y}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}