• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Álgebra Elementar

Álgebra Elementar

Mensagempor Thiago Josep » Sex Set 05, 2014 15:32

M = \frac{x²}{y²} - \frac{y²}{x²}
\div
\frac{1}{x²} + \frac{2}{xy} + \frac{1}{y²}

Bem, eu sou um iniciante em matemática e gostaria de uma ajuda neste exercício da UFMG e eu não sei realmente nem como iniciá-la e então desenvolvê-la. Alguém poderia me mostrar passo a passo como, por favor?
Thiago Josep
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Set 03, 2014 17:14
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Álgebra Elementar

Mensagempor DanielFerreira » Qui Jan 01, 2015 22:22

\\ M = (\frac{x^2}{y^2} - \frac{y^2}{x^2}) \div (\frac{1}{x^2} + \frac{2}{xy} + \frac{1}{y^2}) \\\\\\ M = \frac{\frac{x^2}{y^2} - \frac{y^2}{x^2}}{\frac{1}{x^2} + \frac{2}{xy} + \frac{1}{y^2}} \\\\\\ M = \frac{(\frac{x}{y} + \frac{y}{x})(\frac{x}{y} - \frac{y}{x})}{(\frac{1}{x} + \frac{1}{y})^2} \\\\\\ M = \frac{\cancel{(\frac{x}{y} + \frac{y}{x})}(\frac{x}{y} - \frac{y}{x})}{\cancel{(\frac{1}{x} + \frac{1}{y})}(\frac{1}{x} + \frac{1}{y})} \\\\\\ \boxed{M = \frac{\frac{x}{y} - \frac{y}{x}}{\frac{1}{x} + \frac{1}{y}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59