• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação e potenciação - Qual o próximo passo?

Radiciação e potenciação - Qual o próximo passo?

Mensagempor IsadoraLG » Qua Mai 21, 2014 01:17

Só consegui fazer o exercício até determinada parte, mas na resolução há continuidade, o problema é que não entendi essa tal continuação:

(UFRGS) Simplificando \sqrt[]{\frac{a}{\sqrt[3]{a}}} encontramos:

resposta correta: B) \sqrt[3]{a}

O que consegui fazer: \frac{\sqrt[]{a}}{\sqrt[]{\sqrt[3]{a}}}=\frac{\sqrt[]{a}}{\sqrt[6]{a}} = \frac{\sqrt[]{a}}{\sqrt[6]{a}}  .  \frac{\sqrt[6]{{a}^{5}}}{\sqrt[6]{{a}^{5}}}=  \frac{\sqrt[]{a}.\sqrt[6]{{a}^{5}}}{a}=   \frac{{a}^{\frac{1}{2}+\frac{5}{6}}}{a}=   \frac{{a}^{\frac{8}{6}}}{a}=   \frac{{a}^{\frac{4}{3}}}{a}=   {a}^{\frac{1}{3}}=   \sqrt[3]{a}
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado

Re: Radiciação e potenciação - Qual o próximo passo?

Mensagempor Russman » Qua Mai 21, 2014 19:55

É só usar a seguinte propriedade para Reais quaisquer x, y e a \neq 0:

\frac{a^x}{a^y} = a^{(x-y)}

De fato,

\frac{4}{3} - 1 = \frac{1}{3}

e, portanto,

\frac{a^{\frac{4}{3}}}{a} =  a^{\frac{1}{3}} = \sqrt[3]{a}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Radiciação e potenciação - Qual o próximo passo?

Mensagempor IsadoraLG » Qua Mai 21, 2014 21:36

Puxa vida, era uma propriedade simples! =p

Valeu!

Consegui!

E usei o esquema dos números primos para fazer a conta com os expoentes em fração, que você explicou, ao invés do chatinho mmc, bem melhor.
IsadoraLG
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Ter Ago 27, 2013 18:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão em Recursos Humanos
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: