• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra para licenciatura

algebra para licenciatura

Mensagempor daianalemos10 » Ter Jan 21, 2014 14:45

Reais e complexos são isomorfos como aneis?
mostre que Qsqrt[2] e  Q sqrt[3] não são isomorfos.

Sejam R e S aneis comutativos com unidade. Se \phi é um homomorfismo de R sobre S e a caracteristica de R é não nula, prove que a caracteristica de S divide a caracteristica de R.

(não sei nem como começar)
daianalemos10
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jan 21, 2014 11:37
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura matematica
Andamento: cursando

Re: algebra para licenciatura

Mensagempor adauto martins » Qua Dez 28, 2016 17:08

seja K={(x,0)/(x,0)\in C},onde C é o conj.numeros complexos,a saber:
C={z=(x,y)/z=x+yi,i=\sqrt[]{-1}}...vamos tomar f:\Re \rightarrow K e tal q.
f(x)=(x,0),entao:



1)f(x+y)=((x+y),0)=(x,0)+(y,0)=f(x)+f(y)...

f(x.y)=((x.y,0)=(x,0).(y,0)=f(x).f(y)...,logo f e homomorfica...
pela definiçao de f,temos que:
\forall y\in K,\exists x\in \Re/y=f(x,0),ou seja ,f é sobrejetiva,logo f é um isomorfismo...em geral,temos que:
f:{\Re}^{2}=\ReX\Re\rightarrow Cf:{\Re}^{2}=\ReX\Re\rightarrow Cf:{\Re}^{2}=\Re X \Re\rightarrow C é um isomorfismo(prove isso!)...
agora:
f:Q[\sqrt[]{2}]\rightarrow Q[\sqrt[]{3}],nao é um isomorfismo,pois:
sabemos que:Q[\sqrt[]{2}]={p+q\sqrt[]{2}p+q\sqrt[]{2}/p,q \in Q}...Q[\sqrt[]{3}]={m+n\sqrt[]{3}/m,n \in Q}...
suponhamos q.:
f:Q[\sqrt[]{2}]\rightarrow Q[\sqrt[]{3}] seja um isomorfismo,logo:
f(2)=f(\sqrt[]{2}.\sqrt[]{2})=a+b\sqrt[]{3},como f é um isomorfismo,teriamos entao q.:
f(1)=1...f(2)=f(1+1)=f(1)+f(1)=2...se:
[tex]{f(2)}^{2}={(a+b\sqrt[]{3}})^{2}\Rightarrow 4={a}^{2}+2.ab\sqrt[]{3}+3.{b}^{2}...\sqrt[]{3}=(4-3.{b}^{2})/a.b,p/a,b\neq 0...(4-3.{b}^{2})/a.b \in Q(racionais){f(2)}^{2}={(a+b\sqrt[]{3}})^{2}\Rightarrow 4={a}^{2}+2.ab\sqrt[]{3}+3.{b}^{2}...\sqrt[]{3}=(4-3.{b}^{2})/a.b,p/a,b\neq 0...(4-3.{b}^{2})/a.b \in Q(racionais),logo uma contradiçao...entao f nao é um homomorfismo,e como consequencia nao é um isomorfismo...

\phi:R\rightarrow S\phi:R\rightarrow S é por hipotese um homomorfismo,logo é injetivo,entao:
NUC[\phi]={x \in R/\phi(x)={0}_{S}}...entao:
{0}_{S}=\phi({0}_{R})=\phi({1}_{R}.m)=\phi({1}_{R}).\phi(m)={1}_{s}.\phi(m)={1}_{S}.n\Rightarrow existe k \in S,tal que k divide {1}_{S},n...,como {1}_{S} divide apenas ele proprio,logo n=km...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59