• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algebra para licenciatura

algebra para licenciatura

Mensagempor daianalemos10 » Ter Jan 21, 2014 14:45

Reais e complexos são isomorfos como aneis?
mostre que Qsqrt[2] e  Q sqrt[3] não são isomorfos.

Sejam R e S aneis comutativos com unidade. Se \phi é um homomorfismo de R sobre S e a caracteristica de R é não nula, prove que a caracteristica de S divide a caracteristica de R.

(não sei nem como começar)
daianalemos10
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Jan 21, 2014 11:37
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura matematica
Andamento: cursando

Re: algebra para licenciatura

Mensagempor adauto martins » Qua Dez 28, 2016 17:08

seja K={(x,0)/(x,0)\in C},onde C é o conj.numeros complexos,a saber:
C={z=(x,y)/z=x+yi,i=\sqrt[]{-1}}...vamos tomar f:\Re \rightarrow K e tal q.
f(x)=(x,0),entao:



1)f(x+y)=((x+y),0)=(x,0)+(y,0)=f(x)+f(y)...

f(x.y)=((x.y,0)=(x,0).(y,0)=f(x).f(y)...,logo f e homomorfica...
pela definiçao de f,temos que:
\forall y\in K,\exists x\in \Re/y=f(x,0),ou seja ,f é sobrejetiva,logo f é um isomorfismo...em geral,temos que:
f:{\Re}^{2}=\ReX\Re\rightarrow Cf:{\Re}^{2}=\ReX\Re\rightarrow Cf:{\Re}^{2}=\Re X \Re\rightarrow C é um isomorfismo(prove isso!)...
agora:
f:Q[\sqrt[]{2}]\rightarrow Q[\sqrt[]{3}],nao é um isomorfismo,pois:
sabemos que:Q[\sqrt[]{2}]={p+q\sqrt[]{2}p+q\sqrt[]{2}/p,q \in Q}...Q[\sqrt[]{3}]={m+n\sqrt[]{3}/m,n \in Q}...
suponhamos q.:
f:Q[\sqrt[]{2}]\rightarrow Q[\sqrt[]{3}] seja um isomorfismo,logo:
f(2)=f(\sqrt[]{2}.\sqrt[]{2})=a+b\sqrt[]{3},como f é um isomorfismo,teriamos entao q.:
f(1)=1...f(2)=f(1+1)=f(1)+f(1)=2...se:
[tex]{f(2)}^{2}={(a+b\sqrt[]{3}})^{2}\Rightarrow 4={a}^{2}+2.ab\sqrt[]{3}+3.{b}^{2}...\sqrt[]{3}=(4-3.{b}^{2})/a.b,p/a,b\neq 0...(4-3.{b}^{2})/a.b \in Q(racionais){f(2)}^{2}={(a+b\sqrt[]{3}})^{2}\Rightarrow 4={a}^{2}+2.ab\sqrt[]{3}+3.{b}^{2}...\sqrt[]{3}=(4-3.{b}^{2})/a.b,p/a,b\neq 0...(4-3.{b}^{2})/a.b \in Q(racionais),logo uma contradiçao...entao f nao é um homomorfismo,e como consequencia nao é um isomorfismo...

\phi:R\rightarrow S\phi:R\rightarrow S é por hipotese um homomorfismo,logo é injetivo,entao:
NUC[\phi]={x \in R/\phi(x)={0}_{S}}...entao:
{0}_{S}=\phi({0}_{R})=\phi({1}_{R}.m)=\phi({1}_{R}).\phi(m)={1}_{s}.\phi(m)={1}_{S}.n\Rightarrow existe k \in S,tal que k divide {1}_{S},n...,como {1}_{S} divide apenas ele proprio,logo n=km...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}