Página 1 de 1

algebra para licenciatura

MensagemEnviado: Ter Jan 21, 2014 14:45
por daianalemos10
Reais e complexos são isomorfos como aneis?
mostre que Qsqrt[2] e  Q sqrt[3] não são isomorfos.

Sejam R e S aneis comutativos com unidade. Se \phi é um homomorfismo de R sobre S e a caracteristica de R é não nula, prove que a caracteristica de S divide a caracteristica de R.

(não sei nem como começar)

Re: algebra para licenciatura

MensagemEnviado: Qua Dez 28, 2016 17:08
por adauto martins
seja K={(x,0)/(x,0)\in C},onde C é o conj.numeros complexos,a saber:
C={z=(x,y)/z=x+yi,i=\sqrt[]{-1}}...vamos tomar f:\Re \rightarrow K e tal q.
f(x)=(x,0),entao:



1)f(x+y)=((x+y),0)=(x,0)+(y,0)=f(x)+f(y)...

f(x.y)=((x.y,0)=(x,0).(y,0)=f(x).f(y)...,logo f e homomorfica...
pela definiçao de f,temos que:
\forall y\in K,\exists x\in \Re/y=f(x,0),ou seja ,f é sobrejetiva,logo f é um isomorfismo...em geral,temos que:
f:{\Re}^{2}=\ReX\Re\rightarrow Cf:{\Re}^{2}=\ReX\Re\rightarrow Cf:{\Re}^{2}=\Re X \Re\rightarrow C é um isomorfismo(prove isso!)...
agora:
f:Q[\sqrt[]{2}]\rightarrow Q[\sqrt[]{3}],nao é um isomorfismo,pois:
sabemos que:Q[\sqrt[]{2}]={p+q\sqrt[]{2}p+q\sqrt[]{2}/p,q \in Q}...Q[\sqrt[]{3}]={m+n\sqrt[]{3}/m,n \in Q}...
suponhamos q.:
f:Q[\sqrt[]{2}]\rightarrow Q[\sqrt[]{3}] seja um isomorfismo,logo:
f(2)=f(\sqrt[]{2}.\sqrt[]{2})=a+b\sqrt[]{3},como f é um isomorfismo,teriamos entao q.:
f(1)=1...f(2)=f(1+1)=f(1)+f(1)=2...se:
[tex]{f(2)}^{2}={(a+b\sqrt[]{3}})^{2}\Rightarrow 4={a}^{2}+2.ab\sqrt[]{3}+3.{b}^{2}...\sqrt[]{3}=(4-3.{b}^{2})/a.b,p/a,b\neq 0...(4-3.{b}^{2})/a.b \in Q(racionais){f(2)}^{2}={(a+b\sqrt[]{3}})^{2}\Rightarrow 4={a}^{2}+2.ab\sqrt[]{3}+3.{b}^{2}...\sqrt[]{3}=(4-3.{b}^{2})/a.b,p/a,b\neq 0...(4-3.{b}^{2})/a.b \in Q(racionais),logo uma contradiçao...entao f nao é um homomorfismo,e como consequencia nao é um isomorfismo...

\phi:R\rightarrow S\phi:R\rightarrow S é por hipotese um homomorfismo,logo é injetivo,entao:
NUC[\phi]={x \in R/\phi(x)={0}_{S}}...entao:
{0}_{S}=\phi({0}_{R})=\phi({1}_{R}.m)=\phi({1}_{R}).\phi(m)={1}_{s}.\phi(m)={1}_{S}.n\Rightarrow existe k \in S,tal que k divide {1}_{S},n...,como {1}_{S} divide apenas ele proprio,logo n=km...