• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resto da divisão

Resto da divisão

Mensagempor thadeu » Qua Nov 18, 2009 19:22

O resto da divisão de \sqrt{1111111111-22222} por 9 é:

a) 0
b) 1
c) 3
d) 6
e) 8
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Resto da divisão

Mensagempor Molina » Dom Nov 22, 2009 13:57

thadeu escreveu:O resto da divisão de \sqrt{1111111111-22222} por 9 é:

a) 0
b) 1
c) 3
d) 6
e) 8


Boa tarde, Thadeu.

Note o seguinte:

3 dividido por 2 é igual a 1 e o resto é 1. Se eu elevar ao quadrado o dividendo e o divisor o resto permanecerá o mesmo, olhe: 9 dividido por 4 é igual a 2 e o resto é 1.

Entao o resto da divisão de \sqrt{1111111111-22222} por 9 é o mesmo resto da divisão de (1111111111-22222) por 81.

Agora acho que você consegue daqui pra frente, certo? :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Resto da divisão

Mensagempor thadeu » Dom Nov 22, 2009 17:02

Vou postar uma solução passo a passo:

1111111111=10^9+10^8+10^7+10^6+10^5+10^4+10^3+10^2+10+1

22222=2(11111)=2(10^4+10^3+10^2+10+1)

1111111111-22222=10^9+10^8+10^7+10^6+10^5^-10^4-10^3-10^2-10-1

Colocando numa ordem:

1111111111-22222=10^9-10^4+10^8-10^3+10^7^-10^2+10^6-10+10^5-1

Colocando, em cada par, o termo comum em evidência:

\\1111111111-22222=10^4(10^5-1)+10^3(10^5-1)+10^2(10^5-1)+10(10^5-1)+(10^5-1)

1111111111-22222=(10^5-1)(10^4+10^3+10^2+10+1)\\1111111111-22222=(100000-1)(11111)\\1111111111-22222=(99999)(11111)\\1111111111-22222=9(11111)(11111)\\1111111111-22222=9(11111)^2

Então:

\sqrt{1111111111-22222}=\sqrt{9(11111)^2}=3(11111)=33333

O número 33333 dividido por 9 deixa resto 6.
(soma dos algarismos é 15, passaram 6 unidades do último divisor de 9)

Resp d
thadeu
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Out 19, 2009 14:05
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 35 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59