• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Relação de Equivalência

Relação de Equivalência

Mensagempor livia02 » Qui Ago 15, 2013 16:03

Estou com dificuldade em resolver estes dois itens da questão.

Seja R a relação: R=[(a,b)\in Z x Z | ab>0] \cup [(0,0)] (obs: o x representa multiplicação, e os colchetes na verdade são chaves, mas não quis sair na formatação.)

Mostrar que R é uma rel. de equivalência em Z;
Exibir a partição de Z pela relação de equivalência R.

Valeu
livia02
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Ago 14, 2013 20:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Relação de Equivalência

Mensagempor MateusL » Sex Ago 16, 2013 14:00

Para digitar chaves no \LaTeX tens que digitar uma barra antes. Por exemplo, \{ e \}.

Acho que quisestes escrever isto:

R=\{(a,b)\in \mathbb{Z}\times\mathbb{Z}\mid a\cdot b >0\}\cup\{(0,0)\}

Tens que provar que esta relação é reflexiva, simétrica e transitiva em \mathbb{Z}.

Sobre representar as partições, façamos o seguinte:
Definamos que aRb\iff (a,b)\in R.
A relação R particiona \mathbb{Z} em três classes de equivalência:

[1]=\{a\in\mathbb{Z}\mid aR1\}=\mathbb{Z}^*_+=\{a\in\mathbb{Z}\mid a>0\}
[0]=\{a\in\mathbb{Z}\mid aR0\}=\{0\}
[-1]=\{a\in\mathbb{Z}\mid aR(-1)\}=\mathbb{Z}^*_-=\{a\in\mathbb{Z}\mid a<0\}

De fato, todos os números positivos são equivalentes pela relação R, pois, para quaisquer números positivos a e b teremos a\cdot b>0, ou seja, aRb.
Do mesmo modo, todos os números negativos são equivalentes.
Além disso, um número positivo e um número negativo não podem ser equivalentes, pois, se a>0 e b<0, então a\cdot b<0.
Por fim, o zero só é equivalente a ele mesmo. De fato, se existir algum a\neq0 tal que aR0, então a\cdot 0>0, absurdo. Por outro lado, como R é uma relação de equivalência (que é o que você terá que provar), pela propriedade reflexiva teremos 0R0, o que se vê imediatamente pela definição de R, pois (0,0)\in R.

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Relação de Equivalência

Mensagempor livia02 » Sex Ago 23, 2013 15:03

Consegui provar a relação e entendi a sua explicação.
Após isso, tinha que dizer quantos elementos há em cada classe de equivalência.
Respondi que há 1 elemento em cada. Está certo? Pois fui de acordo com as partições?

E como posso determinar o conjunto quociente Z/R? Tenho que usar as partições?
Obrigada!
livia02
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Ago 14, 2013 20:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Relação de Equivalência

Mensagempor MateusL » Sex Ago 23, 2013 15:50

Só há um elemento na partição que eu representei por [0]. Nas partições [1] e [-1] existem infinitos números porque [1] contém todos números inteiros positivos e [-1] contém todos números inteiros negativos. Acho que a minha notação acabou te confundindo. Quando representei uma classe que equivalencia por [1], por exemplo, quis represe ntar que todos os elementos dessa classe são equivalentes ao 1, mas não que o 1 é o único elemento. Poderíamos muito bem representar a classe de equivalência [1], por exemplo, como [2], [3], [1000], ou por qualquer representação [x], com x sendo um inteiro positivo, porque vimos que todos os inteiros positivos são equivalentes pela relação de equivalência R.

O conjunto quociente \mathbb{Z}/R é o conjunto de todas as classes de equivalência em \mathbb{Z} pela relação de equivalência R.

\mathbb{Z}/R=\{[-1],\ [0],\ [1]\}=\{\mathbb{Z}_-^*,\ \{0\},\ \mathbb{Z}_+^*\}

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 20 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.