• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Conjuntos] Conjuntos e geometria plana

[Conjuntos] Conjuntos e geometria plana

Mensagempor bencz » Dom Mar 03, 2013 12:58

Olá... estou aqui estudando, e, cai em uma questão, que nao consigo responder, na realidade, nao consigo nem entender como resolver ela.... :(

a questão é:

Considere os conjuntos

K = conjunto dos quadriláteros planos
P = {x ∈ K | x tem lados 2 a 2 paralelos}
L = {x ∈ K | x tem 4 lados congruentes}
R = {x ∈ K | x tem 4 ângulos retos}
Q = {x ∈ K | x tem 4 lados congruentes e ângulos retos}

Até aí tudo bem, podemos dizer que as citações acima estão todas corretas

Determine os conjuntos:

a) L ∩ P
b) R ∩ P
c) L ∩ R
d) Q ∩ R
e) L ∩ Q
f) P U Q

Bom, oq eu entendi é que:
L = Losango
P = Paralelograma
R = retangulo
Q = quadrado

mas, como resolve um treco desse :::Considere os conjuntos

K = conjunto dos quadriláteros planos
P = {x ∈ K | x tem lados 2 a 2 paralelos}
L = {x ∈ K | x tem 4 lados congruentes}
R = {x ∈ K | x tem 4 ângulos retos}
Q = {x ∈ K | x tem 4 lados congruentes e ângulos retos}

Até aí tudo bem, podemos dizer que as citações acima estão todas corretas

Determine os conjuntos:

a) L ∩ P
b) R ∩ P
c) L ∩ R
d) Q ∩ R
e) L ∩ Q
f) P U Q

BOm, oq eu entendi é que:
L = Losango
P = Paralelograma
R = retangulo
Q = quadrado

Mas como que se resolve um treco desse ????? :(

Agradeço a ajuda
bencz
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Jul 14, 2011 00:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Conjuntos] Conjuntos e geometria plana

Mensagempor maison_souza » Ter Nov 11, 2014 16:02

Ainda entendeu mais do que pois eu não sei nem identificar quem são os elementos dos conjuntos. :(
maison_souza
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 11, 2014 15:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia em Desenvolvimento de Softwar
Andamento: cursando

Re: [Conjuntos] Conjuntos e geometria plana

Mensagempor adauto martins » Ter Nov 11, 2014 20:05

P=paralelogramo,L=losango,R=retangulos,Q=quadrado...todos estao contidos em K,todos sao quadrilateros...
a)L\bigcap_{}^{}P=L pq,todo losango e um paralelogramo,L\subset P...
b)R\bigcap_{}^{}P=R,R\subset P
c)L\bigcap_{}^{}R=L,L\subset R
d)Q\bigcap_{}^{}R=Q,Q\subset R
e)L\bigcap_{}^{}Q=Q,Q\subset L
f)P\bigcup_{}^{}Q=P,Q\subset P
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Conjuntos] Conjuntos e geometria plana

Mensagempor maison_souza » Sex Nov 14, 2014 13:15

Bom dia colegas, essa questão se encontra no Livro Fundamentos da Matemática Elementar - Conjuntos, questão 31, não consegui entender por quê que P=paralelogramo,L=losango,R=retângulos,Q=quadrado POIS, isso não está implícito no enunciado. E também se P = paralelogramo ENTÃO Q \subset P , 
R \subset P , 
L \subset P ENTÃO penso que os conjuntos são assim:
K= { paralelogramo, trapézios}
P = {paralelogramo}
L = {quadrado,losango}
R = {retângulo, quadrado}
Q = {quadrado}
maison_souza
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 11, 2014 15:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnologia em Desenvolvimento de Softwar
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D