• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Potenciação]

[Potenciação]

Mensagempor SCHOOLGIRL+T » Dom Nov 11, 2012 13:12

Como fazer:
{({2}^{x} + {2}^{-x})}^{3}
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Potenciação]

Mensagempor DanielFerreira » Dom Nov 11, 2012 13:22

\\ \left ( 2^x + 2^{- x} \right )^3 = \\\\ \left ( 2^x + \frac{1}{2^x} \right )^3 = \\\\\\ \left ( \frac{2^x \cdot 2^x + 1}{2^x} \right )^3 = \\\\\\ \left ( \frac{2^{2x} + 1}{2^x} \right )^3 = \\\\\\ \left [ \frac{(2^{2x})^3 \cdot (1)^0 + 3 \cdot (2^{2x})^2 \cdot (1)^1 + 3 \cdot (2^{2x})^1 \cdot (1)^2 + (2^{2x})^0 \cdot 1^3}{(2^x)^3} \right ] =

Consegue terminar?

Nota: (a + b)^3 = a^3 \cdot b^0 + 3 \cdot a^2 \cdot b^1 + 3 \cdot a^1 \cdot b^2 + a^0 \cdot b^3
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: [Potenciação]

Mensagempor SCHOOLGIRL+T » Dom Nov 11, 2012 14:02

danjr5 escreveu:\\ \left ( 2^x + 2^{- x} \right )^3 = \\\\ \left ( 2^x + \frac{1}{2^x} \right )^3 = \\\\\\ \left ( \frac{2^x \cdot 2^x + 1}{2^x} \right )^3 = \\\\\\ \left ( \frac{2^{2x} + 1}{2^x} \right )^3 = \\\\\\ \left [ \frac{(2^{2x})^3 \cdot (1)^0 + 3 \cdot (2^{2x})^2 \cdot (1)^1 + 3 \cdot (2^{2x})^1 \cdot (1)^2 + (2^{2x})^0 \cdot 1^3}{(2^x)^3} \right ] =

Consegue terminar?

Nota: (a + b)^3 = a^3 \cdot b^0 + 3 \cdot a^2 \cdot b^1 + 3 \cdot a^1 \cdot b^2 + a^0 \cdot b^3


Não '-'
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Potenciação]

Mensagempor DanielFerreira » Qua Nov 14, 2012 23:32

SCHOOLGIRL+T escreveu:Não '-'

Ao menos, diga o que tentou fazer :!:
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}