• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação exponencial]

[Equação exponencial]

Mensagempor JU201015 » Sáb Nov 10, 2012 20:28

{2}^{x+1}-3.{2}^{x} < {2}^{x-2}-5
Me ajudem a resolver?
Ah! Eu tentei fazer esta e não deu nenhum resultado real. Isso é possível?
{25}^{x}-6.{5}^{x}+5 > 0
Bom, estou aprendendo essa matéria de equação exponencial e, mesmo eu sabendo as propriedades, tenho muita dúvida e não consigo fazer isso na prática. Queria que vcs me dessem exemplos e alguns modos de resolução se possível. Obg.
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação exponencial]

Mensagempor young_jedi » Sáb Nov 10, 2012 20:54

faça o seguinte

2^{x+1}-3.2^{x}<2^{x-2}-5

2.2^x-3.2^x<\frac{2^x}{2^2}-5

2.2^x-3.2^x<\frac{2^x}{4}-5

fazendo esta substituição 2^x=y

2.y-3.y<\frac{y}{4}-5

5<-2.y+3.y+\frac{y}{4}

5<y+\frac{y}{4}

5<\frac{4y}{4}+\frac{y}{4}

5<\frac{5y}{4}

1<\frac{y}{4}

4<y

então

2^x>4

2^x>2^2

portanto

x>2

para o proximo exercicio tente proceder da mesma forma mais lembre-se

25^x=5^{2x}

5^{2x}=(5^x)^2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Equação exponencial]

Mensagempor MarceloFantini » Sáb Nov 10, 2012 21:02

Ju, mantenha tópicos separados para dúvidas diferentes. Em outras palavras, crie um novo tópico para a segunda inequação.

Para a primeira, multiplique tudo por 4 e faça a substituição t = 2^x. Então

2^{x+3} -3 \cdot 2^x = 8t -12t = -12t < t - 20

e

13t > 20, logo t =2^x > \frac{20}{13}. Aplicando o logaritmo na base 2, temos x > \log_2 \frac{20}{13}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Equação exponencial]

Mensagempor JU201015 » Sáb Nov 10, 2012 23:51

young_jedi escreveu:faça o seguinte

2^{x+1}-3.2^{x}<2^{x-2}-5

2.2^x-3.2^x<\frac{2^x}{2^2}-5

2.2^x-3.2^x<\frac{2^x}{4}-5

fazendo esta substituição 2^x=y

2.y-3.y<\frac{y}{4}-5

5<-2.y+3.y+\frac{y}{4}

5<y+\frac{y}{4}

5<\frac{4y}{4}+\frac{y}{4}

5<\frac{5y}{4}

1<\frac{y}{4}

4<y

então

2^x>4

2^x>2^2

portanto

x>2

para o proximo exercicio tente proceder da mesma forma mais lembre-se

25^x=5^{2x}

5^{2x}=(5^x)^2


Mto obrigado! :y:
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Equação exponencial]

Mensagempor JU201015 » Sáb Nov 10, 2012 23:53

MarceloFantini escreveu:Ju, mantenha tópicos separados para dúvidas diferentes. Em outras palavras, crie um novo tópico para a segunda inequação.

Para a primeira, multiplique tudo por 4 e faça a substituição t = 2^x. Então

2^{x+3} -3 \cdot 2^x = 8t -12t = -12t < t - 20

e

13t > 20, logo t =2^x > \frac{20}{13}. Aplicando o logaritmo na base 2, temos x > \log_2 \frac{20}{13}.


Podexá q não coloco mais dúvidas diferentes no mesmo tópico :)
Ah! E obrigado por responder minhas perguntas!
JU201015
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Nov 10, 2012 00:01
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?